yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution.

So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero, and she found that it happens at ( x = 2 ). So she says that's a critical point. Step three, she says she makes a conclusion that therefore ( H ) has a relative extremum. There is Pamela's work.

Is her work correct? If not, what's her mistake? So, pause this video and try to work through it yourself and see if Pamela's work is correct.

All right, well, I'm just going to try to do it again in parallel. So first, let me just take the derivative here. So ( H' (x) ), just using the power rule multiple times, is going to be ( 3x^2 ) for the ( x^3 ), ( -6 \times 2 ) is ( -12 ) or ( -2x ), and then the derivative of ( 12x ) is ( +12 ).

Let's see, you can factor out a three here, so it's ( 3(x^2 - 4x + 4) ), and this part is indeed equal to ( (x - 2)^2 ). So this is equal to ( 3(x - 2)^2 ).

Her step one looks right on target.

Okay, step two, the solution of ( H' (x) = 0 ) is equal to ( x = 2 ). Yeah, that works out. If you were to say ( 3(x - 2)^2 ) which is ( H' (x) ), the first derivative, and set that equal to ( 0 ), this is going to be true when ( x = 2 ). So, any point where your first derivative is equal to zero or it's undefined, it is indeed a critical point.

So this step looks good so far. Step three, ( H ) has a relative extremum at ( x = 2 ). All right, so she made a big conclusion here. She assumed that because the derivative was zero that we have a relative extremum.

Let's just see if you can even just make that conclusion. In order to have a relative extremum, your curve is going to look something like this, and then you would have a relative extremum right over here and over here. Your slope goes from being positive, then it hits zero, and then it goes to being negative.

Or you could have a relative extremum like this. This would be a maximum point; this would be a minimum point right over here, and then in a minimum point, your slope is zero right over there, but right before it, your slope was negative and it goes to being positive.

But you actually have cases where your derivative, your first derivative, is zero, but you don't have an extremum. So for example, you could have a point like this where right over here your slope or your derivative could be equal to zero.

So your first derivative would be equal to zero, but notice your slope is positive. It hits zero and then it goes back to being positive again. So you can't make the conclusion just because your derivative is zero that it's definitely an extremum. You could say it's a critical point.

In order to make this conclusion, you would have to test what the derivative is doing before that point and after that point and verify that it is switching sides. We could try to do that.

So let's make a little table here. Make a little table, do a little bit neater. So ( x ), ( H' (x) ) right over here. We know at ( x = 2 ), ( H' (2) = 0 ); that's our critical point.

But let's try, I don't know, let's see what happens when ( x = 1 ), and then let's see what happens when ( x = 3 ). I'm just sampling points on either side of two. Let's see.

We are going to have when ( x = 1 ), ( H' (1) = 3(1 - 2)^2 = 1 ); thus, it remains positive. And then for ( x = 3 ), well, ( 3 - 2 = 1 ), so ( H' (3) ) is also going to be positive.

So this is actually a situation where, like I just drawn it, our slope is positive before we hit the critical point, it gets to zero, but then it starts becoming positive again.

That's why you actually have to do this test in order to identify whether it's an extremum. It turns out that this is not an extremum; this is not a maximum or minimum point here.

So Pamela's work is not correct, and her mistake is in step three. In order to make this conclusion, you would have to test on either side of that critical point and test the first derivative.

More Articles

View All
Safari Live - Day 133 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon, good afternoon, and a very warm welcome to all of you, ladies and gentlemen, who are watching us on this be…
Top 5 Video Game WTFs!!
Today we are going to be looking at some of the Top 5 Video Game WTF’s. There are way more than 5 out there, but guess what, 5 is a nice round number, and it’s the number of girlfriends I have. And by 5, I mean 0. Definitions: I’m not including things th…
Estimating adding fractions with unlike denominators
[Instructor] We are told that Tony has 2⁄3 of a bag of dark chocolate chips and 4⁄5 of a bag of white chocolate chips. Determine a reasonable estimate of the total amount of chocolate chips Tony has. So pause this video and see if you can figure out which…
Homeroom with Sal & Fareed Zakaria
Hi everyone! Welcome to the daily homeroom livestream. Very excited about the conversation we’re about to have. I will start with my standard announcement to remind everyone that we are a not-for-profit organization and we can only exist with support from…
How to learn Japanese in the easiest ways - Japanese learning tips from a native polyglot 🇯🇵
How can I learn Japanese? Where should I start? Should I learn Hiragana, Katakana, kanji first? How to pronounce Japanese words? Why is Japanese so complicated? I don’t know anything about kanji. Those are the most common things that I hear about learning…
Congress JUST Reset The Housing Market
What’s up guys, it’s Graham here. So, buying a home is about to get a lot easier because starting today, the federal government has agreed to back loans of more than a million dollars to help ease housing affordability. And that means you’re one step clos…