yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution.

So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero, and she found that it happens at ( x = 2 ). So she says that's a critical point. Step three, she says she makes a conclusion that therefore ( H ) has a relative extremum. There is Pamela's work.

Is her work correct? If not, what's her mistake? So, pause this video and try to work through it yourself and see if Pamela's work is correct.

All right, well, I'm just going to try to do it again in parallel. So first, let me just take the derivative here. So ( H' (x) ), just using the power rule multiple times, is going to be ( 3x^2 ) for the ( x^3 ), ( -6 \times 2 ) is ( -12 ) or ( -2x ), and then the derivative of ( 12x ) is ( +12 ).

Let's see, you can factor out a three here, so it's ( 3(x^2 - 4x + 4) ), and this part is indeed equal to ( (x - 2)^2 ). So this is equal to ( 3(x - 2)^2 ).

Her step one looks right on target.

Okay, step two, the solution of ( H' (x) = 0 ) is equal to ( x = 2 ). Yeah, that works out. If you were to say ( 3(x - 2)^2 ) which is ( H' (x) ), the first derivative, and set that equal to ( 0 ), this is going to be true when ( x = 2 ). So, any point where your first derivative is equal to zero or it's undefined, it is indeed a critical point.

So this step looks good so far. Step three, ( H ) has a relative extremum at ( x = 2 ). All right, so she made a big conclusion here. She assumed that because the derivative was zero that we have a relative extremum.

Let's just see if you can even just make that conclusion. In order to have a relative extremum, your curve is going to look something like this, and then you would have a relative extremum right over here and over here. Your slope goes from being positive, then it hits zero, and then it goes to being negative.

Or you could have a relative extremum like this. This would be a maximum point; this would be a minimum point right over here, and then in a minimum point, your slope is zero right over there, but right before it, your slope was negative and it goes to being positive.

But you actually have cases where your derivative, your first derivative, is zero, but you don't have an extremum. So for example, you could have a point like this where right over here your slope or your derivative could be equal to zero.

So your first derivative would be equal to zero, but notice your slope is positive. It hits zero and then it goes back to being positive again. So you can't make the conclusion just because your derivative is zero that it's definitely an extremum. You could say it's a critical point.

In order to make this conclusion, you would have to test what the derivative is doing before that point and after that point and verify that it is switching sides. We could try to do that.

So let's make a little table here. Make a little table, do a little bit neater. So ( x ), ( H' (x) ) right over here. We know at ( x = 2 ), ( H' (2) = 0 ); that's our critical point.

But let's try, I don't know, let's see what happens when ( x = 1 ), and then let's see what happens when ( x = 3 ). I'm just sampling points on either side of two. Let's see.

We are going to have when ( x = 1 ), ( H' (1) = 3(1 - 2)^2 = 1 ); thus, it remains positive. And then for ( x = 3 ), well, ( 3 - 2 = 1 ), so ( H' (3) ) is also going to be positive.

So this is actually a situation where, like I just drawn it, our slope is positive before we hit the critical point, it gets to zero, but then it starts becoming positive again.

That's why you actually have to do this test in order to identify whether it's an extremum. It turns out that this is not an extremum; this is not a maximum or minimum point here.

So Pamela's work is not correct, and her mistake is in step three. In order to make this conclusion, you would have to test on either side of that critical point and test the first derivative.

More Articles

View All
THIS Common Mistake Ruins Small Businesses | Tom Segura
But within families, there’s always ego intention. Always. There’s the brother, the sister, the mother, the cousin, whatever. If you are unable to fire your own mother, you shouldn’t run the family business because you’ve got to think about the business f…
The Stoic Guide To Overcoming The Desire To Escape Everything | STOICISM INSIGHTS
Isn’t it a bit strange that in this vast world we often stick to the same small corners where we were born? Here we are, on this huge spinning globe, and many of us never venture far from where our journey began. Think about it: how often do we find ourse…
Scaling functions horizontally: examples | Transformations of functions | Algebra 2 | Khan Academy
We are told this is the graph of function f. Fair enough. Function g is defined as g of x is equal to f of 2x. What is the graph of g? So, pause this video and try to figure that out on your own. All right, now let’s work through this. The way I will thi…
Stop Caring About What Isn't Yours: Epictetus’ Lessons from My Novel
Stoic philosopher Epictetus didn’t sugarcoat anything. He was direct and told the listener exactly how it was – at least, from the Stoic perspective. His no-nonsense approach, which becomes apparent when reading what’s left of his lectures, is why I love …
My Thoughts On Bitcoin
What’s up you guys? It’s Graham here. So I’m finally going to be talking about one of the most requested topics that I’ve gotten here in the channel in the last month by a lot. And that would be my thoughts on Bitcoin. After all, in the last year, it’s ra…
Conditions for confidence intervals worked examples | AP Statistics | Khan Academy
Ali is in charge of the dinner menu for his senior prom, and he wants to use a one sample z interval to estimate what proportion of seniors would order a vegetarian option. He randomly selects 30 of the 150 total seniors and finds that seven of those samp…