yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution.

So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero, and she found that it happens at ( x = 2 ). So she says that's a critical point. Step three, she says she makes a conclusion that therefore ( H ) has a relative extremum. There is Pamela's work.

Is her work correct? If not, what's her mistake? So, pause this video and try to work through it yourself and see if Pamela's work is correct.

All right, well, I'm just going to try to do it again in parallel. So first, let me just take the derivative here. So ( H' (x) ), just using the power rule multiple times, is going to be ( 3x^2 ) for the ( x^3 ), ( -6 \times 2 ) is ( -12 ) or ( -2x ), and then the derivative of ( 12x ) is ( +12 ).

Let's see, you can factor out a three here, so it's ( 3(x^2 - 4x + 4) ), and this part is indeed equal to ( (x - 2)^2 ). So this is equal to ( 3(x - 2)^2 ).

Her step one looks right on target.

Okay, step two, the solution of ( H' (x) = 0 ) is equal to ( x = 2 ). Yeah, that works out. If you were to say ( 3(x - 2)^2 ) which is ( H' (x) ), the first derivative, and set that equal to ( 0 ), this is going to be true when ( x = 2 ). So, any point where your first derivative is equal to zero or it's undefined, it is indeed a critical point.

So this step looks good so far. Step three, ( H ) has a relative extremum at ( x = 2 ). All right, so she made a big conclusion here. She assumed that because the derivative was zero that we have a relative extremum.

Let's just see if you can even just make that conclusion. In order to have a relative extremum, your curve is going to look something like this, and then you would have a relative extremum right over here and over here. Your slope goes from being positive, then it hits zero, and then it goes to being negative.

Or you could have a relative extremum like this. This would be a maximum point; this would be a minimum point right over here, and then in a minimum point, your slope is zero right over there, but right before it, your slope was negative and it goes to being positive.

But you actually have cases where your derivative, your first derivative, is zero, but you don't have an extremum. So for example, you could have a point like this where right over here your slope or your derivative could be equal to zero.

So your first derivative would be equal to zero, but notice your slope is positive. It hits zero and then it goes back to being positive again. So you can't make the conclusion just because your derivative is zero that it's definitely an extremum. You could say it's a critical point.

In order to make this conclusion, you would have to test what the derivative is doing before that point and after that point and verify that it is switching sides. We could try to do that.

So let's make a little table here. Make a little table, do a little bit neater. So ( x ), ( H' (x) ) right over here. We know at ( x = 2 ), ( H' (2) = 0 ); that's our critical point.

But let's try, I don't know, let's see what happens when ( x = 1 ), and then let's see what happens when ( x = 3 ). I'm just sampling points on either side of two. Let's see.

We are going to have when ( x = 1 ), ( H' (1) = 3(1 - 2)^2 = 1 ); thus, it remains positive. And then for ( x = 3 ), well, ( 3 - 2 = 1 ), so ( H' (3) ) is also going to be positive.

So this is actually a situation where, like I just drawn it, our slope is positive before we hit the critical point, it gets to zero, but then it starts becoming positive again.

That's why you actually have to do this test in order to identify whether it's an extremum. It turns out that this is not an extremum; this is not a maximum or minimum point here.

So Pamela's work is not correct, and her mistake is in step three. In order to make this conclusion, you would have to test on either side of that critical point and test the first derivative.

More Articles

View All
Justification with the mean value theorem: table | AP Calculus AB | Khan Academy
The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification. Well, to use the mean…
The Scientific Revolution and the Age of Enlightenment | World History | Khan Academy
As we get into the 1500s, the Renaissance has been going on for roughly 200 years. Especially, Europe has been rediscovering the knowledge from the Greeks and from the Romans. As they enter into the 16th century, they start to go beyond the knowledge of t…
Estimating multi-digit addition and subtraction word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told Minley has 158,159 flight points. About how many total flight points does Minley have now? So why don’t you pause this video and have a go at it? And remember, they don’t want you to figure out the exact number; they just say about how many. So…
The Tragic Downfall Of The Dogecoin Millionaire
What’s up, Gramids? Guys, here. So, almost a year ago, I met up with a man who maxed out his credit cards, invested his life savings, and threw it all in a moonshot opportunity that he believed would make him obscenely rich: Dogecoin. Just 69 days after h…
Exploring Buenos Aires | National Geographic
When I first visited Buenos Aires, I immediately fell in love. To me, there’s no city like this in the entire world. My name is Kristen Borg; I’m a travel enthusiast and a contributor for National Geographic. I first came through here on my way to Patagon…
Ancient Mesopotamia 101 | National Geographic
(soft music) [Narrator] The story of writing, astronomy, and law. The story of civilization itself begins in one place. Not Egypt, not Greece, not Rome, but Mesopotamia. Mesopotamia is an exceedingly fertile plain situated between the Tigris and the Euph…