yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing quadratics by linear expressions with remainders | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

So if you've been watching these videos, you know that we have a lot of scenarios where people seem to be walking up to us on the street and asking us to do math problems, and I guess this will be no different.

So let's say someone walks up to you on the street and says, "Quick! ( \frac{x^2 + 5x + 8}{x + 2} ), what can this be simplified to?" Or, "What is ( \frac{x^2 + 5x + 8}{x + 2} )?"

Pause this video and see if you can work through that.

There are two ways that we can approach this. We can try to factor our numerator and see if we have a common factor there, or we can try to use algebraic long division.

So let's first try to factor this numerator, and we would ideally want ( x + 2 ) to be one of the factors. So let's see what two numbers can add up to 5, and when I multiply them, I get 8.

Ideally, 2 is one of them, so I can think of 2 and 3, but ( 2 \times 3 ) is going to be equal to 6, not 8. I can't think of anything else.

But that still gives us some progress, because what if we did say, "Alright, let's rewrite part of it"? What if we were to write ( x^2 + 5x ), and we want to write a + 6, because that actually would be divisible by ( x + 2 ).

So I'm going to write ( + 6 ), but of course, we have an 8 here, so then we're going to have an extra 2 right over there, and then all of that is divisible by ( x + 2 ).

Now I can rewrite this part up here in orange: that is ( x + 2 ) times ( x + 3 ). So let me write it here: ( x + 2 ) times ( x + 3 ). I still have that ( + 2 ) sitting out there in the numerator ( + 2 ), and then all of that over ( x + 2 ).

I could also write this as being over ( x + 2 ) and this being over ( x + 2 ). All I did is I said, "Hey, if I have something plus something else over ( x + 2 ), that could be the first something over ( x + 2 ) plus the second something over ( x + 2 )."

Here we can say, "Hey, look, this first part, as long as ( x ) does not equal negative 2, because then we would be changing the domain, these two would cancel out." You could say, "Hey, I'm just dividing the numerator and the denominator by ( x + 2 ), and so this would be equal to ( x + 3 + \frac{2}{x + 2} )."

I would have to constrain the domain, so this is for ( x ) does not equal negative 2.

In this situation, we had a remainder, and people will refer to the 2 as the remainder. We divide as far as we can, but we still have it left to divide the 2 by ( x + 2 ). So we would refer to the 2 as the remainder.

Now that wasn't too difficult, but it also wasn't too straightforward. We'll see that, and this is a situation where the algebraic long division is actually a little bit more straightforward.

So let's try that out, and once again pause this video and see if you can figure out what this is through algebraic long division.

We're trying to take ( x + 2 ) and divide it into ( x^2 + 5x + 8 ). Look at the highest degree terms: the ( x ) and the ( x^2 ). ( x ) goes into ( x^2 ) ( x ) times.

Put it in the first-degree column: ( x ) times 2 is ( 2x ) and ( x ) times ( x ) is ( x^2 ). Subtract these from ( x^2 + 5x ), and we get ( 5x - 2x = 3x ).

( x^2 - x^2 ) is just 0. Bring down that 8. Look at the highest degree term, and we get ( x ) goes into ( 3x ) 3 times. Put that in the constant column or the 0th-degree column, so ( + 3 ).

( 3 \times 2 = 6 ), ( 3 \times x = 3x ). Subtract these, and we are left with… let me scroll down a little bit. You're left with those canceling out, and you're left with ( 8 - 6 ), which is indeed equal to 2.

We could say, "Hey, we don't really know how to divide ( x + 2 ) into 2 for an arbitrary ( x ), so we will say, 'Hey, this is going to be equal to ( x + 3 ) with a remainder of 2.”

Once again, if you wanted to rewrite that original expression and you wanted it to be completely the same, including the domain, you would have to constrain the domain just like that.

More Articles

View All
What Could Trigger a Shark Attack? | Rogue Shark
Across the Whit Sundays, hundreds of baited cameras are deployed and listening stations fixed as scientists race to understand why these previously safe waters have turned deadly. As the footage comes in, one big clue emerges: the poor visibility. What w…
Sled Dog Houses - Thaw Project | Life Below Zero
What I got here is I got some plywood, some rough cut 2x4s. I’m going to start laying this out. My goal here is to be efficient with my materials; you know, try to make my dog houses out of one sheet of plywood per dog. When winter comes, you got to cons…
Ten Years Later
[patriotic instrumental music, Edison Records phonograph cylinder - Rule, Britannia!] Hello Internet. Well, here we are. One decade later. Ha! I wish that was how it worked, but it is not. No, YouTube still feels like my new job even though I’ve put in a…
Gaga Tea FETISH ?? -- IMG! #33
This cat better watch out. And the only thing more badass than guns is kittens. It’s episode 33 of IMG! This is every way Mario can die on one page. And this is a Hadouken manicure. Could you grab me some peanut butter? Oh, but watch out for the honey. Sh…
What is artificial intelligence
In this video, we’re going to talk about what artificial intelligence even is. So to start with that, let’s just break down these words: artificial and intelligence. We could start with intelligence. What does that mean to you? Well, for most of us, we a…
Intro to adverbs | The parts of speech | Grammar | Khan Academy
Hello grammarians! Today we are going to talk skillfully and patiently about adverbs and what it is that adverbs do. In order to do that, I think it might be useful to talk about what adjectives do first. So, adjectives can modify stuff. I should have be…