yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing quadratics by linear expressions with remainders | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

So if you've been watching these videos, you know that we have a lot of scenarios where people seem to be walking up to us on the street and asking us to do math problems, and I guess this will be no different.

So let's say someone walks up to you on the street and says, "Quick! ( \frac{x^2 + 5x + 8}{x + 2} ), what can this be simplified to?" Or, "What is ( \frac{x^2 + 5x + 8}{x + 2} )?"

Pause this video and see if you can work through that.

There are two ways that we can approach this. We can try to factor our numerator and see if we have a common factor there, or we can try to use algebraic long division.

So let's first try to factor this numerator, and we would ideally want ( x + 2 ) to be one of the factors. So let's see what two numbers can add up to 5, and when I multiply them, I get 8.

Ideally, 2 is one of them, so I can think of 2 and 3, but ( 2 \times 3 ) is going to be equal to 6, not 8. I can't think of anything else.

But that still gives us some progress, because what if we did say, "Alright, let's rewrite part of it"? What if we were to write ( x^2 + 5x ), and we want to write a + 6, because that actually would be divisible by ( x + 2 ).

So I'm going to write ( + 6 ), but of course, we have an 8 here, so then we're going to have an extra 2 right over there, and then all of that is divisible by ( x + 2 ).

Now I can rewrite this part up here in orange: that is ( x + 2 ) times ( x + 3 ). So let me write it here: ( x + 2 ) times ( x + 3 ). I still have that ( + 2 ) sitting out there in the numerator ( + 2 ), and then all of that over ( x + 2 ).

I could also write this as being over ( x + 2 ) and this being over ( x + 2 ). All I did is I said, "Hey, if I have something plus something else over ( x + 2 ), that could be the first something over ( x + 2 ) plus the second something over ( x + 2 )."

Here we can say, "Hey, look, this first part, as long as ( x ) does not equal negative 2, because then we would be changing the domain, these two would cancel out." You could say, "Hey, I'm just dividing the numerator and the denominator by ( x + 2 ), and so this would be equal to ( x + 3 + \frac{2}{x + 2} )."

I would have to constrain the domain, so this is for ( x ) does not equal negative 2.

In this situation, we had a remainder, and people will refer to the 2 as the remainder. We divide as far as we can, but we still have it left to divide the 2 by ( x + 2 ). So we would refer to the 2 as the remainder.

Now that wasn't too difficult, but it also wasn't too straightforward. We'll see that, and this is a situation where the algebraic long division is actually a little bit more straightforward.

So let's try that out, and once again pause this video and see if you can figure out what this is through algebraic long division.

We're trying to take ( x + 2 ) and divide it into ( x^2 + 5x + 8 ). Look at the highest degree terms: the ( x ) and the ( x^2 ). ( x ) goes into ( x^2 ) ( x ) times.

Put it in the first-degree column: ( x ) times 2 is ( 2x ) and ( x ) times ( x ) is ( x^2 ). Subtract these from ( x^2 + 5x ), and we get ( 5x - 2x = 3x ).

( x^2 - x^2 ) is just 0. Bring down that 8. Look at the highest degree term, and we get ( x ) goes into ( 3x ) 3 times. Put that in the constant column or the 0th-degree column, so ( + 3 ).

( 3 \times 2 = 6 ), ( 3 \times x = 3x ). Subtract these, and we are left with… let me scroll down a little bit. You're left with those canceling out, and you're left with ( 8 - 6 ), which is indeed equal to 2.

We could say, "Hey, we don't really know how to divide ( x + 2 ) into 2 for an arbitrary ( x ), so we will say, 'Hey, this is going to be equal to ( x + 3 ) with a remainder of 2.”

Once again, if you wanted to rewrite that original expression and you wanted it to be completely the same, including the domain, you would have to constrain the domain just like that.

More Articles

View All
Story time: EXACTLY how I met my three mentors
I’m going to share the three people who have made the biggest impact on my life, who have been my mentors, exactly how I met them and how that happened. So let’s start here; we’re going to go old school. My first mentor I met when I was about 13 years ol…
Jacobian prerequisite knowledge
Hello everyone. So, in these next few videos, I’m going to be talking about something called the Jacobian and more specifically, it’s the Jacobian matrix or sometimes the associated determinant. Here, I just want to talk about some of the background know…
How interest rates affect interest rates, financial flows, and exchange rates
What we’re going to do in this video is try to think of the chain of events that would happen if the supply of loanable funds were to increase in the United States. The way that that could happen is, let’s say, the Federal Reserve were to, so to speak, pr…
How to Measure to a MILLIONTH of an Inch (The Dawn of Precision) - Smarter Every Day 206
[Destin] Radius gauges. [Darryl] Yes. If anything’s missing it’s because you probably– [Destin] What are you talking about? You probably misplaced it. Hey, it’s me Destin. Welcome back to Smarter Every Day. So this is my dad, and everybody’s gonna t…
Warrior Watch: Protecting Kenya's Lions | Explorers in the Field
[Music] [Music] My father was Saawariya and they used to kill many, many, many Lancia. He used to tell me how dangerous Lancer. I used to hate Lance. [Music] When I was a young boy, I thought I would be growing up and killing Lance, but now we protect the…
Tracing program execution | Intro to CS - Python | Khan Academy
Let’s trace a program step by step. This is a common pattern we’ll use to understand what the computer is doing under the hood when we press the Run button. Tracing program execution like this helps us better read and write programs because we can start t…