yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing quadratics by linear expressions with remainders | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

So if you've been watching these videos, you know that we have a lot of scenarios where people seem to be walking up to us on the street and asking us to do math problems, and I guess this will be no different.

So let's say someone walks up to you on the street and says, "Quick! ( \frac{x^2 + 5x + 8}{x + 2} ), what can this be simplified to?" Or, "What is ( \frac{x^2 + 5x + 8}{x + 2} )?"

Pause this video and see if you can work through that.

There are two ways that we can approach this. We can try to factor our numerator and see if we have a common factor there, or we can try to use algebraic long division.

So let's first try to factor this numerator, and we would ideally want ( x + 2 ) to be one of the factors. So let's see what two numbers can add up to 5, and when I multiply them, I get 8.

Ideally, 2 is one of them, so I can think of 2 and 3, but ( 2 \times 3 ) is going to be equal to 6, not 8. I can't think of anything else.

But that still gives us some progress, because what if we did say, "Alright, let's rewrite part of it"? What if we were to write ( x^2 + 5x ), and we want to write a + 6, because that actually would be divisible by ( x + 2 ).

So I'm going to write ( + 6 ), but of course, we have an 8 here, so then we're going to have an extra 2 right over there, and then all of that is divisible by ( x + 2 ).

Now I can rewrite this part up here in orange: that is ( x + 2 ) times ( x + 3 ). So let me write it here: ( x + 2 ) times ( x + 3 ). I still have that ( + 2 ) sitting out there in the numerator ( + 2 ), and then all of that over ( x + 2 ).

I could also write this as being over ( x + 2 ) and this being over ( x + 2 ). All I did is I said, "Hey, if I have something plus something else over ( x + 2 ), that could be the first something over ( x + 2 ) plus the second something over ( x + 2 )."

Here we can say, "Hey, look, this first part, as long as ( x ) does not equal negative 2, because then we would be changing the domain, these two would cancel out." You could say, "Hey, I'm just dividing the numerator and the denominator by ( x + 2 ), and so this would be equal to ( x + 3 + \frac{2}{x + 2} )."

I would have to constrain the domain, so this is for ( x ) does not equal negative 2.

In this situation, we had a remainder, and people will refer to the 2 as the remainder. We divide as far as we can, but we still have it left to divide the 2 by ( x + 2 ). So we would refer to the 2 as the remainder.

Now that wasn't too difficult, but it also wasn't too straightforward. We'll see that, and this is a situation where the algebraic long division is actually a little bit more straightforward.

So let's try that out, and once again pause this video and see if you can figure out what this is through algebraic long division.

We're trying to take ( x + 2 ) and divide it into ( x^2 + 5x + 8 ). Look at the highest degree terms: the ( x ) and the ( x^2 ). ( x ) goes into ( x^2 ) ( x ) times.

Put it in the first-degree column: ( x ) times 2 is ( 2x ) and ( x ) times ( x ) is ( x^2 ). Subtract these from ( x^2 + 5x ), and we get ( 5x - 2x = 3x ).

( x^2 - x^2 ) is just 0. Bring down that 8. Look at the highest degree term, and we get ( x ) goes into ( 3x ) 3 times. Put that in the constant column or the 0th-degree column, so ( + 3 ).

( 3 \times 2 = 6 ), ( 3 \times x = 3x ). Subtract these, and we are left with… let me scroll down a little bit. You're left with those canceling out, and you're left with ( 8 - 6 ), which is indeed equal to 2.

We could say, "Hey, we don't really know how to divide ( x + 2 ) into 2 for an arbitrary ( x ), so we will say, 'Hey, this is going to be equal to ( x + 3 ) with a remainder of 2.”

Once again, if you wanted to rewrite that original expression and you wanted it to be completely the same, including the domain, you would have to constrain the domain just like that.

More Articles

View All
Trump vs. Zuckerberg: Who Has Contributed More to Fake News? | Bernard-Henri Lévy| Big Think
Anti-intellectualism means two things: hate of debate and hate of truth as a goal, which can be achieved approximately in a long intellectual process. This is what is hated by anti-intellectualism. The two things together. The debate, the discussion, the …
7 TRICKS: How To Save A TON Of Money When Renting A Home
What’s of you guys? It’s Graham here. So, I don’t think this topic has really been covered much before on YouTube. We’ve all been focused on buying properties, investing in them, and then renting them out to tenants as a landlord. But what if, just hear m…
Touching a Meteor | StarTalk
As far as science was concerned, I was completely hopeless. I mean, I remember, um, in my biology class, I was put in the front row. I hated being in the front row because, you know, you’re in direct contact with the person who was teaching you. I would h…
A mind-blowing explanation of the speed of light | Michelle Thaller | Big Think
So, Tom, you asked the question, “How does mass increase as you go faster?” And this is really a wonderful part of Einstein’s theories. It actually is also relatively slippery and kind of complicated because to even answer this question at all, we have to…
The Fatal Contradiction of the Race Grifters | Coleman Hughes
I mean often in life we think we’re doing one thing for one reason, but we’re actually doing it for a totally different reason. Often that other reason is unflattering. Um, you know, we claim to be doing something out of moral concern, but it’s very quick…
If superpowers were real: Super speed - Joy Lin
Some superheros can move faster than the wind. The men in Apollo 10 reached a record-breaking speed of around 25,000 miles per hour when the shuttle re-entered the Earth’s atmosphere in 1969. Wouldn’t we save a lot of time to be able to move that fast? Bu…