yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example using estimation for decimal products


2m read
·Nov 10, 2024

We are told that 52 times 762 is equal to 39,624, and then we're told to match each expression to its product. These products, this is the exercise on Khan Academy. You can move them around so the product can be matched to the appropriate expression. So pause this video and see if you can figure that out.

All right, now what you might have realized is all of these expressions deal with the same digits as 52 times 762. They just have the decimal in different places. So what we can do is we can say, "Hey, look, the answer is going to have the digits 39624 in that order." You could see all of these have the digits 3, 9, 6, 2, 4 in that order.

Then we can estimate what these expressions should be equal to, what the product should be equal to, to think about the decimal. So this first expression, 0.52 times 76.2, the way I think about it is 0.52, that's close to 50 hundredths. That's close to a half, and so 76.2, that's close to 76.

And so this first expression, this first product should be roughly half of 76. Half of 76 would be around 38, and so which of these is close to 38? Well, this first one is 39.624, so that's actually the closest to 38. The second one is 396, and then we have 3962.

So I like this first one, the 39.624. That feels right. Now the second expression, 0.52 times 760, well once again, 0.52 is roughly equal to 50 hundredths, roughly equal to 5 tenths, roughly equal to one half. And so, and 762, we could say, "Hey, you know that's if we want to be really rough, really, really approximate it, we could say hey it's roughly 800."

And so this should be about half of 800, so it should be around 400. And so we actually had that choice already there, so this would be 396.24. It definitely wouldn't be the 3962.4, and so I'm already feeling good that this last choice sits down here.

But I can verify it; 5.2, well let's just say that's roughly 5. 762, let's say that's roughly 800. So 5 times 800, that would be around, that would be 4,000. And so we would expect this expression to be close to 4,000, and indeed that's what this choice is.

So it turns out that it was already in the order that we needed it to be, but it's good that we checked on that.

More Articles

View All
Jack Bogle: Beware of This One Mistake 99% of Investors Make
At least start off. I mean, I’d say start off an index fund period. And for five years, don’t do anything else and then look around and see what’s happened in the five years. See how it felt when the market dropped fifty percent. See how it felt when it c…
Camera Trap Captures Surprise Treetop Proposal | National Geographic
So, I was down in Panama doing research in the canopy of the rainforests. I knew that my boyfriend, Dan, was coming to visit me in a couple of weeks, so I was actually really excited. [Music] I called him up and I told him that he would not only be able t…
15 Bad Money Habits You Need To Break Immediately
You know, there are some people out there that are very good at making money, but for some reason, they never managed to become rich. They work hard every day, but no matter how much they earn, money seems to just slip through their fingers. You ever wond…
Example translating parabola
Function G can be thought of as a translated or shifted version of f. Of x is equal to x^2. Write the equation for G of x. Now pause this video and see if you can work this out on your own. All right, so whenever I think about shifting a function, and i…
2018 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Hmm, good morning. [Applause] I’m Warren, he’s Charlie. Charlie does most things better than I do, but, well, this one’s a little tough. Charlie, maybe you can chew on that a while. Okay, at the formal meeting that will begin at 3:45, we will…
Solving system with elimination | Algebra | Khan Academy
So we have a system of two linear equations here. This first equation, (x - 4y = 8), and the second equation, (-x + 3y = 11). Now what we’re going to do is find an (x) and (y) pair that satisfies both of these equations. That’s what solving the system act…