yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: recognizing function from Taylor series | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So we're given this expression: Is the Taylor series about zero for which of the following functions? They give us some choices here, so let's just think a little bit about this series that they gave us.

If we were to expand it out, let's see. When n is equal to 0, it would be ((-1)^0) power, which is 1, times (X^0), which is 1, over 0 factorial, which is 1. So it'll be 1 plus...

When n is 1, well then this is going to be negative. So it's going to be minus, and then (x^1) over 1 factorial. Well, I could just write that as (X) right over here.

Then when n is 2, the negative ((-1)^2) is going to be positive, so plus (x^2) over 2. Then it's going to be minus (x^3) over 3 factorial, and then it’s going to be plus, and I can keep going.

You've seen this before: (X^4) over 4 factorial. It's going to keep going, minus plus; it's going to keep alternating on and on and on.

Now, our general form for a Taylor series about zero, which we could also call a Maclaurin series, would be, our general form would be (F(0)) plus (F'(0) \cdot X) plus (F''(0) \cdot \frac{X^2}{2}) plus the third derivative at 0 (\cdot \frac{X^3}{3!}) plus the fourth derivative, you get the idea, evaluated at 0 (\cdot \frac{X^4}{4!}), and we would just go on and on and on.

Now to figure out which function in order for this, in order what I wrote in blue, to be the Maclaurin series, that means that (F(0)) needs to be equal to 1. It means that (F'(0)), actually let me write this down, it means that (F(0)) needs to be equal to 1. (F(0) = 1).

It means that (F''(0)) needs to be the coefficient on the (X) here, which is negative 1. And we could keep going. It means that the second derivative at zero, well that's going to be the coefficient on this (\frac{X^2}{2}), so that's got to be equal to 1.

And you see the general idea that the third derivative at 0 is equal to 1. It's the coefficient on (\frac{X^3}{3!}), which is negative 1 right over here.

So just using this information, can we figure out which of these it is? You could do a little bit of deductive reasoning here.

Let's evaluate all of these functions at zero and see which of these are 1. So (s(0)), well that's 0 just by looking at this first constraint. (s(0)) isn't 1; we can rule that out.

Cosine of 0 is 1, so that's still in the running. (e^0 = 1), and then the natural log of 1 + 0, that's the natural log of 1, which is 0, so that's out of the running.

So just from that first constraint, knowing that (F(0) = 1), we're able to rule out two of the choices.

Then knowing that the first derivative evaluated at zero is going to be negative 1, well what's the first derivative of cosine of (x)? What's negative sine of (x)? If we evaluate that at zero, we're not going to get negative 1; we're going to get 0, so we can rule this out.

Now, the first derivative of (e^x) is (e^x). If we evaluate that at zero, we're going to get 1, not negative 1, so we can rule that out.

Not even looking at anything else, we have a pretty good sense that D is probably our answer. But we could check the first derivative here: (F'(x)) is going to be negative (e^x), so (F'(0)) is going to be (e^0) or negative 1, so it meets that one.

And if you were curious, you could keep going and see that it meets all the other constraints. But Choice D is the only one that meets even the first two constraints for the function at zero and the first derivative at zero.

More Articles

View All
Origins of the Universe 101 | National Geographic
[Narrator] The universe is everything. From the tiniest particles to the largest galaxies, to the very existence of space, time, and life. But how did it all begin? The origin of the universe is the origin of everything. Multiple scientific theories plus …
Sampling distribution of the difference in sample proportions -Probability example
In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we’re going to do in this…
Office Hours With Sal: Monday, March 16 Livestream From Homeroom
Hello Facebook and Twitter and now YouTube. Okay, thanks. Uh, uh, hello everyone! Asal here and, uh, so as promised, uh, we are going to continue with these daily live streams. Given all of the school closures that are happening around the country and aro…
If I started a YT channel in 2024, I’d do this :
[Music] Hi guys! Hi! So I know you have a lot of questions in your mind. Is it too late? Can I do it too? If yes, how? What do I need to know? Where do I start? What do people around me think about me? I’ve been trying to become a YouTuber since 2016, a…
Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy
Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables. How many trial…
15 Questions to Unlock Your Potential
Hey, we’re going to have a heart-to-heart today, all right? This is a secret tool that we’ve used for decades. Every couple of years, we go through these exact questions to have a reality check with ourselves, and today we’re going to do it together. Save…