yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: recognizing function from Taylor series | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So we're given this expression: Is the Taylor series about zero for which of the following functions? They give us some choices here, so let's just think a little bit about this series that they gave us.

If we were to expand it out, let's see. When n is equal to 0, it would be ((-1)^0) power, which is 1, times (X^0), which is 1, over 0 factorial, which is 1. So it'll be 1 plus...

When n is 1, well then this is going to be negative. So it's going to be minus, and then (x^1) over 1 factorial. Well, I could just write that as (X) right over here.

Then when n is 2, the negative ((-1)^2) is going to be positive, so plus (x^2) over 2. Then it's going to be minus (x^3) over 3 factorial, and then it’s going to be plus, and I can keep going.

You've seen this before: (X^4) over 4 factorial. It's going to keep going, minus plus; it's going to keep alternating on and on and on.

Now, our general form for a Taylor series about zero, which we could also call a Maclaurin series, would be, our general form would be (F(0)) plus (F'(0) \cdot X) plus (F''(0) \cdot \frac{X^2}{2}) plus the third derivative at 0 (\cdot \frac{X^3}{3!}) plus the fourth derivative, you get the idea, evaluated at 0 (\cdot \frac{X^4}{4!}), and we would just go on and on and on.

Now to figure out which function in order for this, in order what I wrote in blue, to be the Maclaurin series, that means that (F(0)) needs to be equal to 1. It means that (F'(0)), actually let me write this down, it means that (F(0)) needs to be equal to 1. (F(0) = 1).

It means that (F''(0)) needs to be the coefficient on the (X) here, which is negative 1. And we could keep going. It means that the second derivative at zero, well that's going to be the coefficient on this (\frac{X^2}{2}), so that's got to be equal to 1.

And you see the general idea that the third derivative at 0 is equal to 1. It's the coefficient on (\frac{X^3}{3!}), which is negative 1 right over here.

So just using this information, can we figure out which of these it is? You could do a little bit of deductive reasoning here.

Let's evaluate all of these functions at zero and see which of these are 1. So (s(0)), well that's 0 just by looking at this first constraint. (s(0)) isn't 1; we can rule that out.

Cosine of 0 is 1, so that's still in the running. (e^0 = 1), and then the natural log of 1 + 0, that's the natural log of 1, which is 0, so that's out of the running.

So just from that first constraint, knowing that (F(0) = 1), we're able to rule out two of the choices.

Then knowing that the first derivative evaluated at zero is going to be negative 1, well what's the first derivative of cosine of (x)? What's negative sine of (x)? If we evaluate that at zero, we're not going to get negative 1; we're going to get 0, so we can rule this out.

Now, the first derivative of (e^x) is (e^x). If we evaluate that at zero, we're going to get 1, not negative 1, so we can rule that out.

Not even looking at anything else, we have a pretty good sense that D is probably our answer. But we could check the first derivative here: (F'(x)) is going to be negative (e^x), so (F'(0)) is going to be (e^0) or negative 1, so it meets that one.

And if you were curious, you could keep going and see that it meets all the other constraints. But Choice D is the only one that meets even the first two constraints for the function at zero and the first derivative at zero.

More Articles

View All
Transitioning from Academia to Data Science - Jake Klamka with Kevin Hale
So Kevin, for those of our listeners that don’t know who you are, what’s your deal? I’m a partner here at Y Combinator. I actually was in the second ever batch. I was in Winter 2006 and I founded a company called Wufoo, ran that for five years, and then …
Why You Want Your Doctor To Be a Psychopath
When you hear the word “psychopath,” what comes to mind? Serial killers? Members of the mafia? Hardened criminals? What if I told you psychopaths are also surgeons, lawyers, and civil servants? By the end of this video, you will want your surgeon to be a …
Native American societies before contact | Period 1: 1491-1607 | AP US History | Khan Academy
Often when we think about the beginning of American history, we think 1776 with the Declaration of Independence or maybe 1492 when Columbus arrived in the Americas. But the history of America really begins about 15,000 years ago when people first arrived …
Serfs and manorialism | World History | Khan Academy
In a previous video, we already talked about the feudal system. How you can have a king, and then you might have some vassals of the king who give an oath of fealty to the king in the homage ceremony. You might have a duke, and you could keep going down t…
Tales of a Tailfeather | Explorers in the Field
(Birds chirping) (Soft music) - My relationship to the natural world was largely fostered through my grandparents who owned a farm in Idaho. We would go there every summer and we were free to roam and play in the forest and hang out. But I still didn’t ne…
Khan Kickoff Pep Talk: Akbar Gbajabiamila
Khan Academy students, what’s going on? It’s Akbar Bajabiamila, host of American Ninja Warrior. I just wanted to check in with you guys, but also to wish you a happy new year. It’s 2021. Things are going to be a lot different, and I know in 2020 things g…