yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: recognizing function from Taylor series | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So we're given this expression: Is the Taylor series about zero for which of the following functions? They give us some choices here, so let's just think a little bit about this series that they gave us.

If we were to expand it out, let's see. When n is equal to 0, it would be ((-1)^0) power, which is 1, times (X^0), which is 1, over 0 factorial, which is 1. So it'll be 1 plus...

When n is 1, well then this is going to be negative. So it's going to be minus, and then (x^1) over 1 factorial. Well, I could just write that as (X) right over here.

Then when n is 2, the negative ((-1)^2) is going to be positive, so plus (x^2) over 2. Then it's going to be minus (x^3) over 3 factorial, and then it’s going to be plus, and I can keep going.

You've seen this before: (X^4) over 4 factorial. It's going to keep going, minus plus; it's going to keep alternating on and on and on.

Now, our general form for a Taylor series about zero, which we could also call a Maclaurin series, would be, our general form would be (F(0)) plus (F'(0) \cdot X) plus (F''(0) \cdot \frac{X^2}{2}) plus the third derivative at 0 (\cdot \frac{X^3}{3!}) plus the fourth derivative, you get the idea, evaluated at 0 (\cdot \frac{X^4}{4!}), and we would just go on and on and on.

Now to figure out which function in order for this, in order what I wrote in blue, to be the Maclaurin series, that means that (F(0)) needs to be equal to 1. It means that (F'(0)), actually let me write this down, it means that (F(0)) needs to be equal to 1. (F(0) = 1).

It means that (F''(0)) needs to be the coefficient on the (X) here, which is negative 1. And we could keep going. It means that the second derivative at zero, well that's going to be the coefficient on this (\frac{X^2}{2}), so that's got to be equal to 1.

And you see the general idea that the third derivative at 0 is equal to 1. It's the coefficient on (\frac{X^3}{3!}), which is negative 1 right over here.

So just using this information, can we figure out which of these it is? You could do a little bit of deductive reasoning here.

Let's evaluate all of these functions at zero and see which of these are 1. So (s(0)), well that's 0 just by looking at this first constraint. (s(0)) isn't 1; we can rule that out.

Cosine of 0 is 1, so that's still in the running. (e^0 = 1), and then the natural log of 1 + 0, that's the natural log of 1, which is 0, so that's out of the running.

So just from that first constraint, knowing that (F(0) = 1), we're able to rule out two of the choices.

Then knowing that the first derivative evaluated at zero is going to be negative 1, well what's the first derivative of cosine of (x)? What's negative sine of (x)? If we evaluate that at zero, we're not going to get negative 1; we're going to get 0, so we can rule this out.

Now, the first derivative of (e^x) is (e^x). If we evaluate that at zero, we're going to get 1, not negative 1, so we can rule that out.

Not even looking at anything else, we have a pretty good sense that D is probably our answer. But we could check the first derivative here: (F'(x)) is going to be negative (e^x), so (F'(0)) is going to be (e^0) or negative 1, so it meets that one.

And if you were curious, you could keep going and see that it meets all the other constraints. But Choice D is the only one that meets even the first two constraints for the function at zero and the first derivative at zero.

More Articles

View All
"COLLEGE WON'T Make You Successful, DO THESE 3 THINGS INSTEAD!" | Kevin O'Leary
Every time I’ve lost dough, and I’ve lost plenty, luckily I’ve had more successes than failures, is when I didn’t listen to my gut, which is my experience. You think that you’ve come here and you’ve got an MBA and you’re going to go out in the world and y…
Interpreting y-intercept in regression model | AP Statistics | Khan Academy
Adriana gathered data on different schools’ winning percentages and the average yearly salary of their head coaches in millions of dollars in the years 2000 to 2011. She then created the following scatter plot and trend line. So this is salary in million…
Weak acid equilibria | Acids and bases | AP Chemistry | Khan Academy
Before we get into the topic of weak acid equilibria, let’s look at a strong acid first. So let’s say that H A is a strong acid and reacts with water to produce the hydronium ion and A minus, the conjugate base. 2H A—technically, the reaction comes to an…
The Mexican-American War | AP US History | Khan Academy
This is a painting of U.S. General Winfield Scott entering Mexico City on September 15, 1847. Scott landed with a U.S. naval fleet several weeks beforehand. He bombarded the coastal stronghold of Veracruz and then fought his way inland toward the capital.…
Sleepy Cubs | America's National Parks
A black bear and her cubs – a typical litter of three. For 5 months, she hasn’t stirred. Even as their mother slumbered, the cubs nursed on a rich diet of super fatty milk. Over the winter, her own weight dropped up to 1⁄3. How she survived still stumps u…
Why Sharks Attack Cage Divers | Shark Attack Files
It’s a mystery. Great whites around the world have been attacking divers in cages. No one knows why this is frightening. Finally, Dr. Greg Scomo may have cracked the case. He thinks the sharks are chasing bait; they want to tease these sharks in tight to …