yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Coming Home – Ep. 4 | National Geographic Presents: IMPACT With Gal Gadot
GAL: Home is a place where you can find safety and shelter. Kayla knows too well what it’s like to feel unsafe. As a Black trans woman, she has grown up in a world that cast her out for simply being who she is. But she’s determined to leave her truth with…
Creative biology at work | High school biology | Khan Academy
[Music] Hi everyone, Salcon here. From finding novel cures for a seemingly incurable disease to diagnosing what’s going on with someone, if you’re a physician or a nurse, you can imagine there’s incredible creativity in biology. And don’t take my word fo…
Separate Boys From Men | Wicked Tuna: Outer Banks
It’s untie and get out of here. Oh yeah, slow right down, Tyler. You’re gonna snap your welds right off. Yeah, getting everything ready now. We’re not done. Yeah, our green stick is so tall we have to lower it to get underneath the bridge, but now we’r…
Charlie Munger's New Warning for the 2023 Stock Market
I used to come to the Berkshire annual meetings on coach from Los Angeles, and it was full of rich stockholders, and they would clap when I came into the coach section. I really like that. Holly mentioned Warren Buffett’s right-hand man, the vice chairma…
15 Financial Milestones That Bring the Most Joy
You know it’s kind of funny when most people start a proper financial journey when they’re at the point of “this is it, okay, I’m done living this way, I’m getting my together.” Well, they think they know what kind of milestones will bring them the most j…
World's Strongest Magnet!
This is the world’s strongest magnet, capable of sucking objects in and generating electric current. Can you see that? And levitating non-magnetic objects. It even wreaks havoc on camera equipment. Wire is magnetic! So if it’s a CMOS sensor, the electro…