yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Wabi-Sabi | A Japanese Philosophy of Perfect Imperfection
The pursuit of perfection has become the norm in today’s world, where chronic dissatisfaction, burnout, depression, and anxiety reign supreme. We’ve subjected ourselves to unrealistic standards and rigorously chase an ideal that’s impossible to reach. Adv…
Announcing Khan Academy Official LSAT Prep – Free for all!
Hi, I’m Sal Khan, founder of the not-for-profit Khan Academy, and if you are thinking about going to law school, know someone who is, or just care about equity of opportunity, I have some very exciting news. We are announcing—Khan Academy is announcing—t…
Is The Universe A Simulation?
In 1970, a British mathematician named John Conway created a project known as the Game of Life. Even though it’s a game, it isn’t one that you necessarily play. The Game of Life is a zero-player game, which doesn’t make much sense when you hear it. The wa…
Re: Which Planet is the Closest?
Hello Internet. While working on a future video, I offhandedly wrote, “Venus, the closest planet to Earth.” But later, while editing, I thought, “You know, let me check that.” Which led to me to this video by Dr. Stockman explaining how, no, Venus is not …
If FACEBOOK was a VIDEO GAME ... (Fake Game Trailer)
[Music] Are you guys bored? Well, check this out! Vsauce Fate Games presents Facebook: The Game. Would you guys like something like that? Well, pop in the cartridge and explore 150 million profiles. Avoid the dangerous, murderous pokes! Do people even do …
How Dolphins Evade Shark Attacks | Sharks vs. Dolphins: Blood Battle
JAIR DARKE: Oh my god. Another one, another one. Wait. Wait. [bleep] JASON DARKE: He’s got a dolphin in his mouth. NARRATOR: Sharks and dolphins. This vicious rivalry has been raging for millions of years. Two Australian oystermen get a firsthand look a…