yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Behind the Scenes with Geoffrey Rush | Genius
[music playing] Hello, my name is Geoffrey Rush and I play Albert Einstein the older. I was four when Albert Einstein died. So everything I know about him is more from the legend that he became because he was almost like a cult figure in a way. Einstein …
Protecting the Queendoms 👑 | Queens | National Geographic
The most impressive female leaders will stop at nothing. Orca matriarchs will go to great lengths to make sure their sons thrive. The matriarch’s family has met up with another pod. She needs her son to mate and pass on her genes. One female in the visit…
Nat Geo Staff Ranks Top 8 BEST Walking Shoes for Men and Women | National Geographic
Heyo! I’m Starlight Williams, a digital editor at National Geographic and your go-to gal for information you didn’t know you needed. Today I’m teaming up with my fellow walking aficionado, Ruben Rodriguez Perez, to talk to you about our picks for the best…
The early Temperance movement - part 2
Hey, it’s Becca, and this is Temperance Part Two. Um, in this video, I’ll be talking more about how exactly, over the course of the 1830s until mostly the 1860s, the temperance movement took root in America and how it became this national phenomenon. So,…
Vertical asymptote of natural log | Limits | Differential Calculus | Khan Academy
Right over here, we’ve defined y as a function of x, where y is equal to the natural log of x - 3. What I encourage you to do right now is to pause this video and think about for what x values this function is actually defined. Or another way of thinking …
Why it's so hard to get anything done
I don’t know if you’ve ever noticed this, but it seems like the more things that you have to do, the harder it is to do pretty much anything. Like, you have this long list of tasks and responsibilities that seems to be growing longer and longer and longer…