yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
"The Biggest Mistake I've Ever Made" | Shark Tank's Kevin O'Leary & "The Mooch" Anthony Scaramucci
What do you tell them about building their own net worth and how to go forward and not trip up in that aspect? So many kids come out of college $80,000 in debt and they go straight downward from there. What advice do you give young kids in terms of start…
How I got 100k subscribers in 3 months (step-by-step)
This is how to create a killer YouTube video to blow up your channel. Because one or two killer YouTube videos have the potential to significantly transform your channel permanently. Pay close attention because many creators, including myself, achieve the…
Homeroom with Sal & Mala Sharma - Wednesday, May 5
Hi everyone! Sal Khan here from Khan Academy. Welcome to the homeroom live stream. A very exciting conversation today! We have Mala Sharma, who is the VP and GM of Creative Cloud at Adobe. But before we jump into that conversation, I will give some of our…
How to Create Luck - Dalton Caldwell, Y Combinator Partner
I’m Dalton. I’m a partner at Y Combinator. I was the founder of a company called imeem in 2003 and a company called mixed-media labs in 2010. I’m working at YC since 2013. Okay, how do you create luck? The way to create luck is to move much faster than e…
Why OpenAI's o1 Is A Huge Deal | YC Decoded
Open AI’s newest model is finally here. It’s called 01, and it’s much better for questions around mathematics and coding, and scores big on many of the toughest benchmarks out there. So, what’s the secret to why it works? Let’s take a look. Inside OpenAI…
Proving triangle congruence | Congruence | High school geometry | Khan Academy
What I would like to do in this video is to see if we can prove that triangle DCA is congruent to triangle BAC. Pause this video and see if you can figure that out on your own. All right, now let’s work through this together. So let’s see what we can fi…