yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Win Without Trying (A Taoist simile about losing your flow)
Competitions can be nerve-wracking. The more we live up to the day on which we are supposed to shine, the more anxiety builds up. What if I perform badly? What if something goes wrong? An Olympic swimmer trains thousands of hours just to get that medal. A…
Equivalent fractions on number lines
So they’re telling us that r fifths is equal to eight tenths, and we need to figure out what r is going to be equal to. They help us out with this number line where they’ve put eight tenths on the number line. That makes sense because to go from zero to o…
Explorer Albert Lin dives into an ancient flooded tomb beneath a pyramid in Sudan
Diving this tomb is so high risk that we’re sending an underwater camera drone in first to see if it’s even possible. You guys ready? Yeah, we’re ready. Let’s go down. I’mma see how far I can get it down. Maybe I can get it right to the entrance. Cop…
10 Stoic Principles So That NOTHING Can AFFECT YOU | Epictetus (Stoicism)
[Music] In the chaos of our daily lives, it’s easy to feel like we’re drowning in a sea of stress and uncertainty. Yet, there’s a way to find calm amidst the storm—a path to inner peace that has stood the test of time. Imagine yourself standing firm, uns…
Unicorn FARTS on Your LIPS ?? -- LÜT #23
A telephoto lens with the tripod for your iPhone and soap shaped like a piece of poop. It’s episode 23 of LÜT. Wake up in your warm Nintendo knee-high socks and put on your fancy superhero bow-tie, along with these sunglasses from Spencer’s with a neat ha…
Why I Dont Trust The Polls This Election #shorts
Kevin, what does your gut tell you about how tomorrow goes? A binary outcome is going to be decided by 3:00 or 4:00 in the morning. That’s my guess, like everybody else is guessing. I’m in the camp that says the swing states all go to one side or the oth…