yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Get to Know the Gorillas of Disney's Animal Kingdom | Magic of Disney's Animal Kingdom
On the Gorilla Falls Exploration Trail lives a very special resident. This is our family troupe of gorillas. They’re a big group; all of our kids were born here. So we have Lily, she’s our oldest. She’s 12. There she is. Lily is probably my favorite. She…
15 Things You Learn When You Fly First Class
A couple of days ago, an airline firm released this image of what they see as the future of air travel: double decker seats. Hey, it’s all fun and games until the guy in green eats the microwaved lasagna. You get on a cheap flight and engulfs the girl in …
You Are Two
Your brain is two brains. Two hemispheres, each doing half the work of being you. Half your vision goes to each, and half your movement directed by each. Right controls left, and left controls right. Your two brains coordinate through a wire of nerves, bu…
Virus structure and replication | Viruses | High school biology | Khan Academy
In this video, we’re going to talk about viruses, which I think are maybe one of the most fascinating things in biology because they have some aspects of living organisms, but we don’t consider them living. But before we go into the details of it, I want…
Life's Biggest Lessons
There’s nothing worse than a sleepless night. We’ve all been there, tossing and turning. You focus all your mental power on trying to fall asleep. With all your will, you force yourself to shut your eyes, turn your brain off, and pray to be whisked away i…
10 Ways To Instantly Improve Your Life
Significant improvement comes from long-term action. But there are lots of things you can actively do today that will instantly improve the quality of your life. Welcome to LAX. First stop, fix your sleep. We’re going to start off with probably the lowes…