yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
a day full of eating in Tokyo,Japan 🍣~ spend the day with me🇯🇵
Today I’m taking you along for a day in my life in Tokyo, which is going to be full of eating, and we’re gonna discover so many yummy foods. I woke up early, feeling fresh and ready to start the day. I took a moment to admire the city from my window, the …
THIS Made Me Change My Mind About Bitcoin | Anthony Pompliano
You and I had some epic showdowns on television. You called it everything from crypto garbage, uh, to one time you forbid me from owning any more of it, uh, but I think that there’s a lot of changes that have happened in the market, both from a regulatory…
How to Win an Interstellar War
Could aliens destroy us from light years away? Mh, another day at the Kurzgesagt Labs, where we answer the most important questions with science. Today: how might civilizations wage war across light years? What kind of devastating weapons could they use, …
Detroit’s Urban Beekeepers are Transforming the City’s Vacant Lots | Short Film Showcase
Detroit is a place of innovators, creatives. It’s a great place to come and start over again. I think it’s definitely important for people who belong to that community to kind of help rebuild it. During the crisis and during the foreclosure and a bankrup…
What Happens if the Moon Crashes into Earth?
Today we are answering an age-old, very scientific and important question: What if the Moon crashes into Earth? It’s more interesting and weird than you probably think. Let’s start with the basics. Why isn’t the Moon on its way to crash into us? Already,…
Do the ultra successful share similar characteristics?
It’s hard to say whether these ultra high net worth people, billionaires or corporate executive types, really have the same style. I think everybody has their own unique style. I think it’s part of the active negotiations; it’s just part of the game. It …