yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
How to make INSTANT PROFIT with Real Estate
What’s up you guys? It’s Graham here. So, I understand this sounds like a very intense claim to say that you can make money immediately in real estate, especially when on this channel I preach investing in real estate is a very long-term plan. But there i…
fly with me from CA to AZ | tiny airplane, big adventure! day 1
Hi, I’m Stevie, and this is my 1949 Cessna 140A that we’re going to be flying all the way from California to Wisconsin for EAA Air Venture. If you’re not familiar, Air Venture is like the pilot event every single year. 600,000 people and over 10,000 plane…
When you call the US Coast Guard - Smarter Every Day 265
Hey! It’s me, Destin. Welcome back to Smarter Every Day! I recently got to spend some time with the United States Coast Guard, and I gotta say, I was blown away. A lot of people don’t even know about the Coast Guard or think about the Coast Guard, but it’…
Less versus fewer | Frequently confused words | Usage | Grammar
Hello Garian, hello Rosie, hi David. Uh, so you’ve called me into the recording booth today? Yes, because uh, you have a bone to pick with me—just a little bit. Yeah, so I have always, in my usage, I always drawn a distinction between less and fewer. I w…
Classifying shapes of distributions | AP Statistics | Khan Academy
What we have here are six different distributions, and what we’re going to do in this video is think about how to classify them or use the words that people typically use to classify distributions. So let’s first look at this distribution right over here…
Ray Dalio on The Big Debt Cycle
Just frame for us your thoughts on debt for a second. How do you think about debt as an absolute construct or a relative construct, especially sovereign debt? You know, there is a US debt, but then there are also every other 182 countries who have a ton o…