yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Example multiplying multi digit numbers
In this video, we’re going to try to compute 6742 times 23. So like always, pause this video and try to compute it for yourself. All right, now let’s work on this together, and I’m going to do it using what’s often known as the standard algorithm. Algor…
7 TRICKS: How To Save A TON Of Money When Renting A Home
What’s of you guys? It’s Graham here. So, I don’t think this topic has really been covered much before on YouTube. We’ve all been focused on buying properties, investing in them, and then renting them out to tenants as a landlord. But what if, just hear m…
Destination: Alaska
[Applause] I’m just packing my bag for Alaska, and if you want to know why I’m going to Alaska, well, you’re not the only one. It seems I’ve become the why guy on a new Morning Show on Channel 10 called Breakfast. Now, have you ever found yourself just s…
Helicopter Physics Series - #3 Upside Down Flying With High Speed Video - Smarter Every Day 47
Hey, it’s me Destin. Welcome back to Smarter Every Day. So last week I described collective pitch control for a helicopter, I described cyclic pitch control for a helicopter, and I also described anti-torque pitch control. But this week we’re going to com…
Mastery Learning in Mr. Vandenberg’s Class
I’m Tim Vandenberg and I’ve been teaching for 25 years: 17 years in Hesperia, California, 6th grade at Carmel Elementary School. Hesperia is a lower socio-economic status area on average, especially among our student population. 100% of our students at th…
Fleeting Grace of the Habitable Zone | Cosmos: Possible Worlds
We’ve got the biggest dreams of putting our eyes on other worlds, traveling to them, making them our home. But how do we get there? The stars are so far apart. We would need sailing ships that could sustain human crews over the longest haul of all time. T…