yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Would You Risk Venomous Insect Stings for Your Job? | National Geographic
Harvest rants are intriguing because not only are they among the most painful of all stinging insects, their venom is 30-40 times more toxic than, say, rattlesnake venom. If you pick them up by hand, well, you might just get stung. The biggest risk around…
Is Reality Real? The Simulation Argument
We humans are unable to experience the true nature of the universe, unfiltered. Our senses and brains can only process a fraction of the world. So we have to use concepts and tools to learn about the true nature of reality. Technological progress not only…
Meth Smuggling Model | Locked Up Abroad
At that point in time, my main mission was to get it back to Australia. We bought a whole heap of crystal meth from Zack’s suppliers—big snaplock bags of drugs. So, we bought a whole heap of gift sets that had bath salts in them. There was a process; we w…
Rotations: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that Eduardo rotated triangle ABC by 90 degrees clockwise about the origin to create triangle A’B’C’. So what Eduardo did is took this triangle right over here, rotated it 90° clockwise. So it’s rotating at 90 degrees clockwise about the origin…
Discussions of conditions for Hardy Weinberg | Biology | Khan Academy
In the introductory video to the Hardy-Weinberg equation, I gave some conditions for the Hardy-Weinberg equation to hold. What I want to do in this video is go into a little bit more depth and have a little more of a discussion on the conditions for the H…
Embrace World Mental Health Day with Sal Khan
Sal Con here from Khan Academy, and we are inside, uh, my office/sl closet. This is where I record videos, take meetings, etc. Uh, many of y’all know I’m a big fan of meditation. It helps me clear my mind; it helps me think more clearly, be less stressed,…