yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Studying the Dry Valleys of Antarctica | Continent 7: Antarctica
[Music] These systems are very unique, and as things change climate-wise, they’re going to change and could change irreversibly. The Dry Valleys are very similar to Mars’ environment. I mean, it’s incredible. All of the microbial life on the continent has…
The Surprising Science of How We "Taste" Food | National Geographic
[Music] 75 to 95% of what we call taste is really smell. When we perceive the flavors of food, it really feels like the experience is there in your mouth, and yet, in fact, it’s your brain kind of playing tricks on you in a way. Neurogastronomy is the st…
15 Things You Learn When You Fly First Class
A couple of days ago, an airline firm released this image of what they see as the future of air travel: double decker seats. Hey, it’s all fun and games until the guy in green eats the microwaved lasagna. You get on a cheap flight and engulfs the girl in …
Article II of the Constitution | US Government and Politics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m investigating Article 2 of the Constitution, which establishes the executive branch of government. It’s Article 2 that establishes the office of the President of the United States, tells us who’s eligible f…
How to Not Become A Man-Child (or Woman-Child)
We live in an era of adult-children: everybody wants freedom, but nobody wants responsibility. But, the truth is, you can’t have freedom without taking personal responsibility for your own needs. Wanna live on your own? You have to be responsible for co…
Married for 88 Years, This Couple Shares Their Secrets to Love | Short Film Showcase
[Music] Episode of Hustle and Athena Rocket. Allah Captain Miranov Qatari long, that’s an understanding in the future. [Music] There is any, yeah, I want a coffee date. Efficient without my dad is under Nate with the grace of God, and Mohammed said in on…