yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Can Texas Secede from the Union?
Can Texas secede from the Union? America’s second most populated and second largest state is always first to remind you that it was once an independent nation: The Republic of Texas. Unlike California’s three-week, almost accidental flirt with independenc…
The Fifth Amendment | The National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy. Today, we’re learning more about the takings clause of the Fifth Amendment. In another video, we’ll discuss the other clauses of the Fifth Amendment, those that deal with self-incrimination and due process of law. But i…
Just Lost Everything | The Freaky Truth Of $1 Terra Luna
All right guys, I was out of town this last weekend getting beat up by Michael Reeves. But now that I’m back in my office, let’s talk about the collapse of Terra Luna. Because I have to say, this was the most catastrophic large-scale event in cryptocurren…
Sky Sharks: Shark Surveillance | SharkFest | National Geographic
[MUSIC PLAYING] NARRATOR: Great whites grow up to 20 feet long and can pack over 5,000 pounds of muscle. [MUSIC PLAYING] Yet, despite their size, they often go unnoticed. A type of camouflage known as counter shading gives these sharks the predatory edge…
How winds affect planes!
You can make it to South Africa; however, this is with no wind. So now, this was the winds last week at 35,000 ft. We’re going to put a 50-knot wind, and normally you could see that the winds around the world generally go from west to east. So, even thou…
You Can't Touch Anything
Hey, Vsauce. Michael here. And today we’re going to get close, like really close. In fact, I want to answer the question: what’s the closest we can get to other objects and other people? Now, it might sound like kind of a simple, easy question, but when …