yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Car insurance basics | Insurance | Financial Literacy | Khan Academy
So cars are something that usually involves some type of insurance. One, cars are a pretty expensive asset that many of us own. The other issue is cars are driving around pretty fast, and they can actually cause a lot of damage to property or to people. …
What's WRONG With This Cat ?!?! IMG! #21
Every geek’s dream and a great reason to keep driving your car! It’s episode 21 of IMG. Here’s a picture of Darth Prime, and here’s Barbie as a homicidal sociopath. Not terrible enough for you? Then check out this example of bad parenting. What’s this ki…
April 8, 2024 Total Solar Eclipse: Here's what you need to know -Smarter Every Day 295
Have you ever doubted something? And you’re like, yeah, I hear people talking about that. But then you experience it and you’re like, okay, I’m a believer. I’m in. I’m all in on this. That’s where I’m at with total solar eclipses. Back in 2017, I met a g…
Homeroom with Sal & Eric Schmidt - Tuesday, November 17
Hi everyone! Welcome to Homeroom with Sal. We have a very exciting show and a very exciting guest today, Eric Schmidt. But before we jump into that conversation, I will give my standard announcements. First, a reminder that Khan Academy is a not-for-prof…
Photos Reveal the Changing Face of Saudi Arabia’s Women | Exposure
[Music] I’m always surprised when I’m in Saudi Arabia because I go there with a sort of sense of dread of how difficult it will be to photograph and how impenetrable the place is. And then I find myself there and having fun. The women in Saudi Arabia are…
The Deutsch Files III
On exactly that, the fact that the more that we summarize what I think is an exceedingly clear body of work in the fabric of reality in the beginning of infinity, when nonetheless you explain it to people as POA says, you know it’s impossible to speak in …