yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy


2m read
·Nov 11, 2024

In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor.

We also showed that these two resistors could be replaced by a single resistor. We labeled this one R1; this is R2. We showed that we can replace R1 and R2 by an equivalent parallel resistor with this expression here for two resistors:

[
RP = \frac{1}{\frac{1}{R1} + \frac{1}{R2}}
]

So, that's how you calculate the equivalent resistance for two parallel resistors. Now, you can ask—and it's a good thing to ask—what if there are more resistors? What if there are more resistors in parallel here? What if I have R3 and R4, R and RN all connected up here? What happens to this expression?

Like we did before, we had a current here, and we know that current comes back here. The first current splits; some current goes down through R1, some goes through R2, and if we add more resistors, some goes down through R3, as some goes down through RN. So, the current basically is coming down here and splitting amongst all the resistors.

Now, all the resistors share the same voltage. So, let's label V. That's just V; they all share the same V, and they all have a different current, assuming they all have a different resistance value.

So, we do exactly the same analysis we did before, which was we know that I here has to be the sum. There's the summation symbol of all the I's: ( I1 + I2 + I3 + ... + IN ). That's as many as we have, so we know that's true.

We also know that the current in each individual resistor ( I_N ) is equal to one over that resistor times V, and V is the same for every one of them. So, now we substitute this equation into here for I. We get the big I. The overall I is equal to voltage times it's going to be a big expression:

[
I = V \left( \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + ... + \frac{1}{R_N} \right)
]

And we do the same thing as we did before, which was we say this expression here is equivalent to one parallel resistor. We're going to make that equal to one parallel resistor.

So, this whole guy here is going to become:

[
\frac{1}{RP}
]

That gives us a way to simplify any number of resistors down to a single parallel resistor.

I'll write that over here. So for ( n ) resistors, multiple resistors:

[
\frac{1}{RP} = \frac{1}{R1} + \frac{1}{R2} + ... + \frac{1}{R_N}
]

So, this tells you how to simplify any number of parallel resistors down to one equivalent parallel resistor.

More Articles

View All
Dr. David Anderson on supporting children's mental health during a crisis | Homeroom with Sal
From Khan Academy: Welcome to the Daily Homeroom live stream! For those of y’all that this is your first time, this is really just a way for us to stay connected during school closures. Obviously, Khan Academy has many resources for students, teachers, a…
Alaska the Final Frontier (Clip) | Alaska: The Next Generation
Trying to raise family in Alaska. Not exactly safe. You just need to keep your eye out. That’s why I start packing a little bit bigger gun. We really came out here just to follow our dream of living the subsistence life. If I was a brand new rookie out he…
The First Amendment | The National Constitution Center | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m learning more about the First Amendment to the US Constitution. The First Amendment is one of the most important amendments to the Constitution, if not the most important. It reads, “Congress shall make no …
I was TERRIFIED to film this - how to take action!
What’s up you guys? It’s Graham here. So, I’m making this video as a part two to the video I uploaded about two weeks ago about how to get over your fear. On that video, I received this amazing comment from the user named Tristan. Tristan explained that …
Modeling with composite functions | Mathematics III | High School Math | Khan Academy
[Voiceover] “Carter has noticed a few quantitative relationships related to the success of his football team and has modeled them with the following functions.” All right, this is interesting. So he has this function, which he denotes with the capital N…
Product rule example
So let’s see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it. So when you look at this, you might say, “Well, I know how to find th…