yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain rule | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

What we're going to go over in this video is one of the core principles in calculus, and you're going to use it any time you take the derivative of anything even reasonably complex. It's called the chain rule. When you're first exposed to it, it can seem a little daunting and a little bit convoluted. But as you see more and more examples, it'll start to make sense, and hopefully, it'll even start to seem a little bit simple and intuitive over time.

So, let's say that I had a function; let's say I have a function h of x, and it is equal to, just for example, I let's say it's equal to sine of x. Let's say it's equal to sine of x squared. Now, I could have written that. I could have written it like this: sine squared of x. But it'll be a little bit clearer using that type of notation.

So let me make it so I have h of x, and what I'm curious about is what is h prime of x? I want to know h prime of x, which another way of writing it is the derivative of h with respect to x. These are just different notations. To do this, I'm going to use the chain rule. The chain rule comes into play every time your function can be used as a composition of more than one function. And as that might not seem obvious right now, it will hopefully maybe by the end of this video or the next one.

Now, what I want to do is a little bit of a thought experiment, a little bit of a thought experiment. If I were to ask you what is the derivative, with respect to x, if I were to supply the derivative operator to x squared with respect to x, what do I get? Well, this gives me 2x. We've seen that many, many, many, many times.

Now, what if I were to take the derivative with respect to a of a squared? Well, it's the exact same thing; I just swapped an a for the x’s. This is still going to be equal to 2a. Now I will do something that might be a little bit more bizarre. What if I were to take the derivative with respect to sine of x of sine of x squared? Well, wherever I had the x’s up here or the a’s over here, I just replace them with a sine of x. So this is just going to be 2 times the thing that I had. So whatever I'm taking the derivative with respect to here, with respect to x here, with respect to a, here’s with respect to sine of x, so it's going to be 2 times sine of x.

Now, so the chain rule tells us that this derivative is going to be the derivative of our whole function with respect to sine of x. So that's going to be 2 sine of x. We could view it as the derivative of the outer function with respect to the inner: 2 sine of x. We could just treat sine of x like it's kind of an x, and it would have been just 2x. But instead, it's a sine of x, so we say 2 sine of x times the derivative—we do this in green—times the derivative of sine of x with respect to x.

The derivative of sine of x with respect to x, we've seen multiple times, is cosine of x. So times cosine of x. And so, there we've applied the chain rule. It was the derivative of the outer function with respect to the inner. So, the derivative of sine of x squared with respect to sine of x is 2 sine of x, and then we multiply that times the derivative of sine of x with respect to x.

So let me make it clear. This right over here is the derivative we're taking the derivative of. We're taking the derivative of sine of x squared. So let me make it clear that's what we're taking the derivative of, with respect to sine of x, with respect to sine of x. And then we're multiplying that times the derivative of sine of x. The derivative of sine of x with respect to x.

And this is where it might start making a little bit of intuition. You can't really treat these differentials—this d whatever—this dx, this d sine of x—as a number, and you really can't. This notation makes it look like a fraction because intuitively that's what we're doing. But if you were to treat them like fractions, then you could think about canceling that and that. And once again, this isn't a rigorous thing to do, but it can help with the intuition.

And then what you're left with is the derivative of this whole sine of x squared with respect to x. So you're left with the derivative of essentially our original function sine of x squared with respect to x, which is exactly what dh/dx is. This right over here, this right over here is our original function h. That's our original function h.

So it might seem a little bit daunting now. What I'll do in the next video is another several examples, and then we'll try to abstract that a little bit.

More Articles

View All
Cathode Rays Lead to Thomson's Model of the Atom
So today, I’m at the University of Sydney with Doctor Phil Dooley, and we’re talking about how our idea of the atom changed from a tiny little hard sphere to something more complicated. And this apparatus has something to do with that. Phil: Exactly, exa…
Reflecting functions introduction | Transformations of functions | Algebra 2 | Khan Academy
So what you see here, this is a screenshot of the Desmos online graphing calculator. You can use it at desmos.com, and I encourage you to use this after this video or even while I’m doing this video. But the goal here is to think about the reflection of …
Peter Lynch: How to Invest for Beginners (7 Investing Rules)
I’m amazed how many people own stocks; they would not be able to tell you why they own it. They couldn’t say in a minute or less why they don’t. Actually, if you really pressed them down, they’d say, “The reason I own this is the sucker’s going up,” and t…
You Can Always Leave
Imagine you have a friend called George… This story was misleading. George isn’t being threatened! He’s just being asked to pay his fair share like the rest of us. If he doesn’t like the arrangement, he can always leave. Let’s start with the question of …
Mac Programming Lesson 2 part 2
Okay, so here we go. And as you can see, food temp is going to be originally where foo is pointing, and food is going to be originally where bar is pointing. Bar isn’t going to be pointing anywhere, which is kind of really useless to have bar even sittin…
How to Not Become A Man-Child (or Woman-Child)
We live in an era of adult-children: everybody wants freedom, but nobody wants responsibility. But, the truth is, you can’t have freedom without taking personal responsibility for your own needs. Wanna live on your own? You have to be responsible for co…