yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain rule | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

What we're going to go over in this video is one of the core principles in calculus, and you're going to use it any time you take the derivative of anything even reasonably complex. It's called the chain rule. When you're first exposed to it, it can seem a little daunting and a little bit convoluted. But as you see more and more examples, it'll start to make sense, and hopefully, it'll even start to seem a little bit simple and intuitive over time.

So, let's say that I had a function; let's say I have a function h of x, and it is equal to, just for example, I let's say it's equal to sine of x. Let's say it's equal to sine of x squared. Now, I could have written that. I could have written it like this: sine squared of x. But it'll be a little bit clearer using that type of notation.

So let me make it so I have h of x, and what I'm curious about is what is h prime of x? I want to know h prime of x, which another way of writing it is the derivative of h with respect to x. These are just different notations. To do this, I'm going to use the chain rule. The chain rule comes into play every time your function can be used as a composition of more than one function. And as that might not seem obvious right now, it will hopefully maybe by the end of this video or the next one.

Now, what I want to do is a little bit of a thought experiment, a little bit of a thought experiment. If I were to ask you what is the derivative, with respect to x, if I were to supply the derivative operator to x squared with respect to x, what do I get? Well, this gives me 2x. We've seen that many, many, many, many times.

Now, what if I were to take the derivative with respect to a of a squared? Well, it's the exact same thing; I just swapped an a for the x’s. This is still going to be equal to 2a. Now I will do something that might be a little bit more bizarre. What if I were to take the derivative with respect to sine of x of sine of x squared? Well, wherever I had the x’s up here or the a’s over here, I just replace them with a sine of x. So this is just going to be 2 times the thing that I had. So whatever I'm taking the derivative with respect to here, with respect to x here, with respect to a, here’s with respect to sine of x, so it's going to be 2 times sine of x.

Now, so the chain rule tells us that this derivative is going to be the derivative of our whole function with respect to sine of x. So that's going to be 2 sine of x. We could view it as the derivative of the outer function with respect to the inner: 2 sine of x. We could just treat sine of x like it's kind of an x, and it would have been just 2x. But instead, it's a sine of x, so we say 2 sine of x times the derivative—we do this in green—times the derivative of sine of x with respect to x.

The derivative of sine of x with respect to x, we've seen multiple times, is cosine of x. So times cosine of x. And so, there we've applied the chain rule. It was the derivative of the outer function with respect to the inner. So, the derivative of sine of x squared with respect to sine of x is 2 sine of x, and then we multiply that times the derivative of sine of x with respect to x.

So let me make it clear. This right over here is the derivative we're taking the derivative of. We're taking the derivative of sine of x squared. So let me make it clear that's what we're taking the derivative of, with respect to sine of x, with respect to sine of x. And then we're multiplying that times the derivative of sine of x. The derivative of sine of x with respect to x.

And this is where it might start making a little bit of intuition. You can't really treat these differentials—this d whatever—this dx, this d sine of x—as a number, and you really can't. This notation makes it look like a fraction because intuitively that's what we're doing. But if you were to treat them like fractions, then you could think about canceling that and that. And once again, this isn't a rigorous thing to do, but it can help with the intuition.

And then what you're left with is the derivative of this whole sine of x squared with respect to x. So you're left with the derivative of essentially our original function sine of x squared with respect to x, which is exactly what dh/dx is. This right over here, this right over here is our original function h. That's our original function h.

So it might seem a little bit daunting now. What I'll do in the next video is another several examples, and then we'll try to abstract that a little bit.

More Articles

View All
How To Get Rich According to Naval Ravikant
There are a million ways to make a million dollars, and this is the sound of all. Ravi Khan does it. For those of you who don’t know, Naval Ravikant is a philosopher and entrepreneur whose insights on happiness, wealth creation, and personal growth have g…
Worked Phillips curves free response question
Assume that the United States economy is currently in a short run equilibrium with the actual unemployment rate above the natural rate of unemployment. Part A says draw a single correctly labeled graph with both the long run Phillips curve and the short …
The Hidden Pattern behind all Financial Bubbles
Tulip Mania. Imagine spending the equivalent of a luxury house on a flower. Welcome to the 1630s Netherlands, where tulips became the world’s first documented financial bubble and taught us lessons about market psychology that we’re still ignoring today. …
The Largest Housing Crash Is Coming | Why I Sold
What’s up, guys? It’s Graham here. Now, I usually don’t record informal videos without a whole bunch of charts and graphs and fancy research, but something needs to be said about the current state of the housing market and the direction it’s headed. I do…
Solve by completing the square: Non-integer solutions | Algebra I | Khan Academy
Let’s say we’re told that zero is equal to x squared plus six x plus three. What is an x, or what our x is that would satisfy this equation? Pause this video and try to figure it out. All right, now let’s work through it together. So the first thing that…
Trump More Likely To Win The Election?
I’m just getting a feeling like I had in 2016 that this is Trump’s to lose. Now, what’s your feeling telling you? Well, you know, there’s—and I get this data pretty well every morning—there’s 43 counties in seven states. 45% of the population hates Trump…