yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Cosine equation solution set in an interval


4m read
·Nov 10, 2024

In a previous video, we established the entire solution set for the following equation. We saw that all the x's that can satisfy this equation are a combination of these x's and these x's. Here, the reason why I'm referring to each of them is numerous x's. For any integer value of n, you'll get another solution.

What I want to do in this video is to make things a little bit more concrete. The way that we're going to do it is by exploring all of the x values that satisfy this equation that sit in the closed interval from negative pi over 2 to 0. So I encourage you, like always, pause this video and have a go at it by yourself before we work through it together.

All right, now let's work through this together. The first helpful thing is we have these algebraic expressions. We have things written in terms of pi; let's approximate them all in terms of decimals. So even pi over 2, we can approximate that. Let's see if pi is approximately 3.14; half of that is approximately 1.57. So we could say this is approximately the closed interval from negative 1.57 to zero.

Negative 1.57 isn't exactly negative pi over 2, but it'll hopefully be suitable for what we're trying to do here. Now let's see if we can write the different parts of these expressions or at least approximate them as decimals. This could be rewritten as x is approximately, if you were to take 1/8 times the inverse cosine of negative 1/6. I encourage you to verify this on your own; on a calculator, you would get that that's approximately 0.22.

Then, pi over 4 is approximately 0.785, so this expression would be approximately 0.22 minus 0.7 times n, where n could be any integer. Then, this one over here on the right, let me do that in the yellow, x could be approximately equal to... well, if this evaluates to approximately 0.22, then this is just the negative of it, so it's going to be negative 0.22.

Then, it's plus what approximately pi over 4 is, so 0.785n. Now, what we could do is just try different n's and see if we're starting above or below this interval, and then see which of the x values actually fall in this interval. So let's just start here. If we just start at n equals zero... actually, when I set up a little table here, if we have n here and if we have the x value here.

When n is zero, well then you don't see this term, and you just get approximately 0.22. Now let's compare that to the interval; the upper bound of that interval is zero, so this does not sit in the interval. This is too high, and we would want to define the x's that sit in the interval. We want to find lower values, so it's good that here we're subtracting 0.785.

I would use positive integer values of n to decrease this 0.22 here. So when n equals 1, we would subtract 0.785 from that, and I'll round all of these to the hundredths place. That would get us to negative 0.57, and that does sit in the interval, so this looks good. This would be a solution in that interval right over here.

Let's try n equals 2, so we would subtract 0.785 again, and that would get us to negative 1.35, not 2.5, 3.5, and that also sits in the interval. It's larger than negative 1.57, so that looks good. Let's subtract 0.785 again when n equals 3; that would get us to negative 2.14. Well, that's all of a sudden out of the interval because that's below the lower bound here, so this is too low.

So we've been able to find two x values that sit in the interval that we cared about. Now, let's use these x values right over here, and I'll set up another table. So let's see, we have our n and then we have our x values. So let's start with n equals 0 because that's easy to compute. Then this term would go away, and we'd have negative 0.22.

That's actually in this interval here; it's below zero; it's larger than negative 1.57, so that one checks out. But now, to really explore, we have to go in both directions. We have to increase it or decrease it. So if we wanted to increase it, we could have a situation where n equals 1.

So if n equals 1, we're going to add 0.785 to this. Now, you immediately know that that's going to be a positive value. If you computed it, it'd be 0.57, which is larger than zero, so this is too high. So now we could try going lower than negative 0.22 by having negative values of n.

So if n is equal to negative 1, that means we're subtracting 0.785 from this right over here, which would get us to negative 1.01. Well, that one works out, so that's in our interval. Now let's subtract 0.785 again, so I'll have n equals negative 2. If I subtract 0.785 again, I could round that to negative 1.79, which is lower than negative 1.57, so it's out of our interval, so it's too low.

All of the x values that are in our interval that satisfy this equation are these two right over here and this one, and this one. And we are done.

More Articles

View All
Three ways to end a sentence | Punctuation | Khan Academy
Hello Garans and hello Paige, hi David. So today we’re going to talk about the three different ways to end a sentence. This is what we call a terminal punctuation of English. Um, Paige, what are those three ways? So the first is a period, okay? And then,…
Urska Srsen Speaks at Y Combinator Female Founder Conference 2016
Hello. Before I actually started talking about myself for the next 20 minutes, I wanted to kick off this speech with a quote from a woman that I admire a lot, and who unfortunately died last week. For those of you who don’t know her, Zaha Hadid was an Ira…
Equations with rational expressions | Mathematics III | High School Math | Khan Academy
So we have a nice little equation here dealing with rational expressions, and I encourage you to pause the video and see if you can figure out what values of x satisfy this equation. All right, let’s work through this together. The first thing I’d like t…
Explicit Laplacian formula
So let’s say you have yourself some kind of multivariable function, and this time let’s say it’s got some very high dimensional input. So X1, X2, on and on and on, up to, you know, X sub n for some large number n. Um, in the last couple videos, I told yo…
Vitalik: Ethereum, Part 1
All right, welcome everybody back to the podcast. We have with us Haseeb Qureshi, who’s our partner at Dragonfly. Haseeb and I used to work together back when I was more active in crypto land. Vitalik is, of course, a polymath ingenue, although he may bri…
15 Ways To OPTIMIZE Your LIFE
15 Ways to Optimize Your Life Life is whatever we make of it. Optimizing your life means making the best or most effective use of your life. It means making the most of your resources and opportunities while striving to reach your full potential. Making …