yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Make Bold Guesses and Weed Out the Failures


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

Going even further, it's not just science. When we look at innovation and technology and building, for example, everything that Thomas Edison did and Nikola Tesla did, these were from trial and error, which is creative guesses and trying things out.

If you look at how evolution works through variation and then natural selection, where it tries a lot of random mutations and it filters out the ones that didn't work, this seems to be a general model through which all complex systems improve themselves over time. They make bold guesses and then they weed out the things that didn't work.

There's a beautiful symmetry to it across all knowledge creation. It's ultimately an act of creativity. We don't know where it comes from, and it's not just a mechanical extrapolation of observations.

The most famous example on this—we mentioned black swans, we talked about boiling water—but the fun and easy one is the turkey. You could have a turkey that's being fed very well every single day and fattened up, and it thinks that it belongs and lives in a benevolent household where the farmer comes and feeds it every day. Until Thanksgiving arrives, and then it's in for a very rude awakening, or I should say, an ending.

That shows you the limits of induction precisely. The theories have to be guessed, and all of our great scientists have always made noises similar to this. It's only the philosophers or certain mathematicians who think that this is the way that science happens—that it's this inductive trend-seeking way of extrapolating from past observations into the future.

Einstein said that he wasn't necessarily brighter than most other people; it's that he was passionately interested in particular problems, and he had a curiosity and an imagination. Imagination was key for him. He needed to imagine what could possibly explain these things.

He wasn't looking at past phenomena in order to come up with general relativity; he was seeking to explain certain problems that existed in physics. Induction wasn't a part of it. Good explanations rely on creativity.

These good explanations are testable and falsifiable, of course, but they are hard to vary and they make risky and narrow predictions. That's a good guiding point for anybody who is listening to this podcast and trying to figure out how they can incorporate this in their everyday life.

Your best theories are going to be creative guesses, not simple extrapolation.

More Articles

View All
Average Net Worth By Age (The Sad Truth)
What’s up, guys? It’s Graham here. So, the other day, I came across an article which found that 60% of Americans are currently living paycheck to paycheck. That got me thinking: what is the average net worth throughout every age, and is that realistically…
1995 Berkshire Hathaway Annual Meeting (Full Version)
Morning! I’m Warren Buffett, the chairman of Berkshire Hathaway, and, uh, on my left is, uh, Charlie Munger, the vice chairman of my partner. We’ll try to get him to say a few words at some point in the proceedings. The format today is going to be just sl…
International Human Rights | 1450 - Present | World History | Khan Academy
We hold these truths to be self-evident, that all men are created equal, that they are endowed by their creator with certain unalienable rights, that among these are life, liberty, and the pursuit of happiness. This is an excerpt of the US Declaration of …
Nuclear Energy Explained: How does it work? 1/3
Have you ever been in an argument about nuclear power? We have, and we found it frustrating and confusing, so let’s try and get to grips with this topic. It all started in the 1940s. After the shock and horror of the war and the use of the atomic bomb, n…
Efficacy of Khan Academy
As a teacher thinking about using a tool inside or outside of your classroom, the first natural question is: well, does that tool work? That’s also very important to us here at Khan Academy, with our mission. We don’t want just people to use it; we want t…
Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy
So we have ( H(x) ) is equal to ( 5x^{1⁄4} + 7 ) and we want to find what is ( H’ ) of 16, or what is the derivative of this function when ( x ) is equal to 16. And like always, pause this video and see if you can figure it out on your own. All right, w…