yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant lines & average rate of change | Derivatives introduction | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So right over here, we have the graph of ( y ) is equal to ( x^2 ) or at least part of the graph of ( y ) is equal to ( x^2 ). The first thing I'd like to tackle is to think about the average rate of change of ( Y ) with respect to ( X ) over the interval from ( X ) equaling 1 to ( X ) equaling 3.

So, let me write that down. We want to know the average rate of change of ( Y ) with respect to ( X ) over the interval from ( X ) going from 1 to 3, and it's a closed interval where ( X ) could be 1 and ( X ) could be equal to 3.

Well, we could do this even without looking at the graph. If I were to just make a table here where if this is ( X ), and this is ( Y ) is equal to ( x^2 ). When ( X ) is equal to 1, ( Y ) is equal to ( 1^2 ), which is just one. You see that right over there? And when ( X ) is equal to 3, ( Y ) is equal to ( 3^2 ), which is equal to 9.

So you can see when ( X ) is equal to 3, ( Y ) is equal to 9. To figure out the average rate of change of ( Y ) with respect to ( X ), you say, “Okay, well, what's my change in ( X )?” Well, we can see very clearly that our change in ( X ) over this interval is equal to positive 2.

Well, what's our change in ( Y ) over the same interval? Our change in ( Y ) is equal to, when ( X ) increased by 2 from 1 to 3, ( Y ) increases by 8. So it's going to be a positive 8.

So what is our average rate of change? Well, it's going to be our change in ( Y ) over our change in ( X ), which is equal to ( \frac{8}{2} ), which is equal to 4. So that would be our average rate of change over that interval. On average, every time ( X ) increases by 1, ( Y ) is increasing by 4.

And how did we calculate that? We looked at our change in ( X ). Let me draw that here. We looked at our change in ( X ) and we looked at our change in ( Y ), which would be this right over here, and we calculated change in ( Y ) over change in ( X ) for average rate of change.

Now, this might be looking fairly familiar to you because you're used to thinking about change in ( Y ) over change in ( X ) as the slope of a line connecting two points. And that's indeed what we did calculate. If you were to draw a secant line between these two points, we essentially just calculated the slope of that secant line.

The average rate of change between two points, that is the same thing as the slope of the secant line. By looking at the secant line in comparison to the curve over that interval, it hopefully gives you a visual intuition for what even average rate of change means.

Because in the beginning part of the interval, you see that the secant line is actually increasing at a faster rate. But then, as we get closer to 3, it looks like our yellow curve is increasing at a faster rate than the secant line, and then they eventually catch up.

So that's why the slope of the secant line is the average rate of change. Is it the exact rate of change at every point? Absolutely not! The curve's rate of change is constantly changing. It's at a slower rate of change in the beginning part of this interval, and then it's actually increasing at a higher rate as we get closer and closer to 3.

So over the interval, their change in ( Y ) over the change in ( X ) is exactly the same. Now, one question you might be wondering is, why are you learning this in a Calculus class? Couldn't you have learned this in an Algebra class? The answer is yes, but what's going to be interesting, and is really one of the foundational ideas of calculus, is, well, what happens as these points get closer and closer together?

We found the average rate of change between 1 and 3, or the slope of the secant line from (1, 1) to (3, 9). But what instead if you found the slope of the secant line between (2, 4) and (3, 9)? So what if you found this slope? But what if you wanted to get even closer?

Let's say you wanted to find the slope of the secant line between the point (2.5, 6.25) and (3, 9). And what if you just kept getting closer and closer and closer? Well, then the slopes of these secant lines are going to get closer and closer to the slope of the tangent line at ( x ) equal to 3.

And if we can figure out the slope of the tangent line, well then we’re in business! Because then we're not talking about average rate of change; we're going to be talking about instantaneous rate of change, which is one of the central ideas that is the derivative.

And we're going to get there soon, but it's really important to appreciate that the average rate of change between two points is the same thing as the slope of the secant line. As those points get closer and closer together, and as the secant line is connecting two closer and closer points together, as that distance between the points, between the ( X ) values of the points, approach zero, very interesting things are going to happen.

More Articles

View All
The Power of the Sun and Salt | Breakthrough
When the plant is finished, 10,000 mirrors will focus the sun’s rays onto the apex of a 600 ft tower filled with salt. So, we heat up our molten salt to 1,000° Fah, and then we’re going to store that liquid and use it for power generation. Salt retains he…
The Beginning of Everything -- The Big Bang
The beginning of everything. The Big Bang. The idea that the universe was suddenly born and is not infinite. Up to the middle of the 20th century, most scientists thought of the universe as infinite and ageless. Until Einstein’s theory of relativity gave …
Setting Up a Beaver Trap | Life Below Zero
All right, good boys. Oh, this is a spot where I’ve trapped before, but I’ve had problems finding water. If I don’t have water, I’m kind of screwed here. If I got water, I got a chance of making sets. I can punch through the ice in a couple of different …
Finding the end time for a movie in 24 hour time | Math | Khan Academy
We are told that Andre goes to a movie that starts at 19 hours 45 minutes, or 1945, and is 90 minutes long. What time is the movie finished? So pause this video and see if you can answer that before we work through it together. All right, so what I like …
Origins of the Dragon | StarTalk
How good could be unless it’s got dragons? It’s no fantasy unless you have a dragon. Yeah, you need the dragon. Yeah. You need the dragons. And in my home institution, the American Museum of Natural History, we had an exhibit a few years ago that was al…
How to turn $5000 into $50,000: With guest Ricky Gutierrez
What’s up you guys, it’s Graham here. So I’m joined today by Ricky Gutierrez, and we were hanging out today. I got a message on my Snapchat, a really good question, which I actually worked out perfectly since Ricky was here: How would you turn five thousa…