yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant lines & average rate of change | Derivatives introduction | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So right over here, we have the graph of ( y ) is equal to ( x^2 ) or at least part of the graph of ( y ) is equal to ( x^2 ). The first thing I'd like to tackle is to think about the average rate of change of ( Y ) with respect to ( X ) over the interval from ( X ) equaling 1 to ( X ) equaling 3.

So, let me write that down. We want to know the average rate of change of ( Y ) with respect to ( X ) over the interval from ( X ) going from 1 to 3, and it's a closed interval where ( X ) could be 1 and ( X ) could be equal to 3.

Well, we could do this even without looking at the graph. If I were to just make a table here where if this is ( X ), and this is ( Y ) is equal to ( x^2 ). When ( X ) is equal to 1, ( Y ) is equal to ( 1^2 ), which is just one. You see that right over there? And when ( X ) is equal to 3, ( Y ) is equal to ( 3^2 ), which is equal to 9.

So you can see when ( X ) is equal to 3, ( Y ) is equal to 9. To figure out the average rate of change of ( Y ) with respect to ( X ), you say, “Okay, well, what's my change in ( X )?” Well, we can see very clearly that our change in ( X ) over this interval is equal to positive 2.

Well, what's our change in ( Y ) over the same interval? Our change in ( Y ) is equal to, when ( X ) increased by 2 from 1 to 3, ( Y ) increases by 8. So it's going to be a positive 8.

So what is our average rate of change? Well, it's going to be our change in ( Y ) over our change in ( X ), which is equal to ( \frac{8}{2} ), which is equal to 4. So that would be our average rate of change over that interval. On average, every time ( X ) increases by 1, ( Y ) is increasing by 4.

And how did we calculate that? We looked at our change in ( X ). Let me draw that here. We looked at our change in ( X ) and we looked at our change in ( Y ), which would be this right over here, and we calculated change in ( Y ) over change in ( X ) for average rate of change.

Now, this might be looking fairly familiar to you because you're used to thinking about change in ( Y ) over change in ( X ) as the slope of a line connecting two points. And that's indeed what we did calculate. If you were to draw a secant line between these two points, we essentially just calculated the slope of that secant line.

The average rate of change between two points, that is the same thing as the slope of the secant line. By looking at the secant line in comparison to the curve over that interval, it hopefully gives you a visual intuition for what even average rate of change means.

Because in the beginning part of the interval, you see that the secant line is actually increasing at a faster rate. But then, as we get closer to 3, it looks like our yellow curve is increasing at a faster rate than the secant line, and then they eventually catch up.

So that's why the slope of the secant line is the average rate of change. Is it the exact rate of change at every point? Absolutely not! The curve's rate of change is constantly changing. It's at a slower rate of change in the beginning part of this interval, and then it's actually increasing at a higher rate as we get closer and closer to 3.

So over the interval, their change in ( Y ) over the change in ( X ) is exactly the same. Now, one question you might be wondering is, why are you learning this in a Calculus class? Couldn't you have learned this in an Algebra class? The answer is yes, but what's going to be interesting, and is really one of the foundational ideas of calculus, is, well, what happens as these points get closer and closer together?

We found the average rate of change between 1 and 3, or the slope of the secant line from (1, 1) to (3, 9). But what instead if you found the slope of the secant line between (2, 4) and (3, 9)? So what if you found this slope? But what if you wanted to get even closer?

Let's say you wanted to find the slope of the secant line between the point (2.5, 6.25) and (3, 9). And what if you just kept getting closer and closer and closer? Well, then the slopes of these secant lines are going to get closer and closer to the slope of the tangent line at ( x ) equal to 3.

And if we can figure out the slope of the tangent line, well then we’re in business! Because then we're not talking about average rate of change; we're going to be talking about instantaneous rate of change, which is one of the central ideas that is the derivative.

And we're going to get there soon, but it's really important to appreciate that the average rate of change between two points is the same thing as the slope of the secant line. As those points get closer and closer together, and as the secant line is connecting two closer and closer points together, as that distance between the points, between the ( X ) values of the points, approach zero, very interesting things are going to happen.

More Articles

View All
The Life of a Miner In Colombia | Mine Hunters
Meanwhile, outside, Fred is using his experience in large commercial gold mines to build a system that can protect the area around the mine. So basically, what’s happening here is we’ve got a lot of water drainage out of the mine, and with the water’s co…
First Image of a Black Hole!
This is the first-ever image of a black hole released by the Event Horizon Telescope collaboration on April 10th, 2019. It shows plasma orbiting the supermassive black hole at the center of the galaxy M87. The bright region shows where plasma is coming to…
To everyone that says “Spend your money NOW! You might not be alive tomorrow!”
You don’t need money and things to be fulfilled because once you escape that mindset, you realize that there is no price to happiness because it was free all along. What’s up, you guys? It’s Graham here. So, gonna go a little bit more personal and maybe …
The Secret of Compressed Air | Science of Stupid: Ridiculous Fails
Air is a remarkable substance. Not only does it allow us to breathe, which I think we can all agree is a good thing, but if you compress it and contain it, you can have loads of fun. Like defying the laws of physics. Or for wacky furniture. Whack! See? T…
Where will Tesla be in 10 years? (w/ @HyperChangeTV)
[Music] Hey guys! Welcome back to yet another episode of the New Money Advent Calendar. We’re still going strong, and a very special video is coming in for you guys today - another collab! This time with my mate, Gally Russell, over in Seattle at the mome…
How to Keep Your Child Learning & Happy! at Home
Hello! Thank you for joining us today. We know how busy you are as parents of young children, particularly during these times with so much going on in the world. We want to make the session a really valuable use of your time, so we’re going to jump right …