yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Lorentz transformation for change in coordinates | Physics | Khan Academy


3m read
·Nov 11, 2024

We spent several videos now getting familiar with the Laurence Transformations. What I want to do now, instead of thinking of what X Prime and CT Prime is in terms of X and CT, I'm going to think about what is the change in X Prime and the change in CT Prime going to be in terms of change in X and change in CT.

We'll see it's just going to involve some fairly straightforward algebraic manipulation. So let's think about it. Change in X Prime is going to be X Prime final minus X Prime initial. Well, X Prime final, let me just pick a suitable color for that. X Prime final is going to be gamma times X final minus beta times CT final.

All I did is I used this formula up here. If I want to figure out my final X Prime, well, I'm just going to think of my final X and my final CT, so that's that. And from that, I am going to subtract the initial X Prime. Well, X Prime initial is just going to be—get another color here—X Prime initial is just going to be Laurence Factor gamma times X initial minus beta times CT initial.

So now let's see, we can factor out the gamma. So this is going to be equal to, and I'll do it in my color for gamma. If we factor out the gamma, we're going to get gamma times, we're going to have X final—let me do this in a. So we have—let me do that in white, actually—we're going to have X final; and then if we distribute this negative sign, minus X initial.

And then let's see, if we distribute this negative sign, well I don't want to skip too many steps here, so that's that. And then we're going to have negative, we're going to have negative beta CT final negative beta CT final, and then we have plus; we distribute this negative plus beta CT initial plus beta CT initial.

And so what can we do here? Well, that's just going to be change in X. So this piece right here is just changing X, so I can rewrite this as being equal to gamma times change in X.

Now let me subtract, let me just subtract. Let me take, let me take out factor out a negative beta. So I'll say minus beta times—well, then you're going to have CT final minus CT initial.

And well, what's CT final minus CT initial? Actually, I'm not going to skip any. I think I'm skipping too many steps already. Well, that's just going to be change in CT. So we get this is all going to be equal to gamma our Loren Factor times change in X minus beta times change in CT.

And since C isn't changing, you could also use C times change in T either way. So there you have it. Notice it takes almost the exact same form. X Prime is equal to gamma times X minus beta CT, and change in X Prime is going to be gamma times change in X minus beta times change in CT.

And I'm not going to do it in this video, but you can make the exact same algebraic argument for your change in CT Prime, as you'll see. I encourage you to do this on your own. Change in CT Prime, which you could also view as—since C isn't changing—C times delta T Prime, these are equivalent, is going to be equal to exactly what you would imagine.

It's going to be gamma times change in CT minus beta times change in X. I encourage you, right after this video, actually do this one too. Just hey, delta X Prime is going to be X Prime final minus X Prime initial, and then do what I just did here—just a little bit of algebraic manipulation.

And you can make the same exact argument over here to get to the result that I just wrote down. You say, well, our change in CT Prime is going to be CT Prime final minus CT Prime initial, and then you can substitute with this, do a little bit of algebraic manipulation, and you'll get that right over there.

And the whole reason I'm doing this is, well, now we can think in terms of change in the coordinates, which will allow us to think about what velocities would be in the different frames of reference, which is going to be pretty neat.

More Articles

View All
Cavalieri's principle in 3D | Solid geometry | High school geometry | Khan Academy
So we have two cylinders here, and let’s say we know that they have the exact same volume, and that makes sense because it looks like they have the same area of their base, and they have the same height. Now, what I’m going to do is start cutting up this…
How Does The James Webb Space Telescope Work? - Smarter Every Day 262
This is my dad, and he’s about to finish this major job you’ve been working on, which is the James Webb Space Telescope? Sun shield for the James Webb Space Telescope. Hey, it’s me, Destin, welcome back to Smarter Every Day. The James Webb Space Telescope…
A private jet for $500,000?
Steve: “I’ve heard about these jets called Haers. Yeah, what about them? I didn’t even know they exist. Could you tell me a little bit more about them?” Sure, of course! Come over here. These are the airplanes. They’re really inexpensive from the standpo…
Force vs. time graphs | Impacts and linear momentum | Physics | Khan Academy
There’s a miniature rocket ship, and it’s full of tiny aliens that just got done investigating a new moon with lunar pools and all kinds of organic new life forms. But they’re done investigating, so they’re going to blast off and take their findings home …
Embracing Nihilism: What do we do when there's nothing?
God is dead. God remains dead, and we have killed him. How shall we comfort ourselves, the murderers of all murderers? What was holiest and mightiest of all that the world has yet owned has bled to death under our knives. Who will wipe this blood off of u…
Civil society | Citizenship | High school civics | Khan Academy
Civil society is one of those terms that you might hear in a politician’s speech, maybe in a line about the importance of maintaining a strong relationship between the government and civil society. But what does it actually mean? A society that’s civilize…