yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How Special Relativity Makes Magnets Work


3m read
·Nov 10, 2024

Only a few elements can be permanent magnets - iron is one. Copper is not. But if you pass an electric current through any metal, it becomes a magnet - an electromagnet. But how does this work? Well, strangely enough, it's a consequence of special relativity.

Special relativity is the fact that in our universe, length and time aren't absolute; they're perceived differently by observers moving relative to each other (hence, "relativity"). For example, if you measure carefully enough, you'll find that time passes slower for observers moving relative to you.

Hey Derek, when did you last shave?

Derek1: Six hours ago.

MovingDerek: Actually, it was five hours, 59 minutes and 59.99999999999 seconds.

And moving objects are also contracted in their direction of motion. You're looking slim.

Derek1: Only in your frame of reference.

So when an object is moving relative to you, it actually takes up less space than when it's not moving. And even though this effect is obviously way tinier than we've shown, length contraction IS what makes an electromagnet work.

Picture a copper wire - it consists of positive metal ions swimming in a sea of free negative electrons. Now the number of protons is equal to the number of negative electrons so overall the wire is neutral. So if there were a positive charged, err... positively charged cat nearby, it would experience no force from the wire on it at all.

And even if there were a current in the wire, the electrons would just be drifting in one direction, but the density of positive and negative charges would still be the same, and so the wire would be neutral, so no force on the kitty. But what if the cat starts moving? Imagine for simplicity that the cat is moving in the same direction as the electrons with the same velocity.

Well now in my frame of reference, the wire is still neutral and so there should be no force on the cat, but consider the same situation in her frame of reference. In the cat's frame of reference, the positive charges in the wire are moving, so according to special relativity their separation will be ever-so-slightly contracted.

Also, from this perspective, the electrons aren't moving so they'll be more spread out than before - remember, objects take up more space when they're not moving than when they are. These two changes together mean there's a higher density of positive charges in the wire, so it's no longer neutral - it's positively charged!

Which means that the positively charged cat will feel a repulsive electric force from the wire. But in my frame of reference, this seems mysterious: there's no force on a stationary charged cat, but a moving cat is somehow repelled from this neutral wire. How do you account for this force?

Well, we say it is the magnetic force, and that's mainly because a wire with current in it deflects nearby magnets. So really, what this experiment shows is that a magnetic field is just an electric field viewed from a different frame of reference.

In the cat's frame of reference, it is repelled from the wire due to the electric field created by the excess positive charges produced by the effects of length contraction. In MY frame of reference, the cat is repelled from a neutral wire due to the magnetic field generated by current flowing in the wire.

So whether you see it as an electric or a magnetic field just depends on your frame of reference, but in either case, the results are the same. So an electromagnet is an everyday example of special relativity in action.

Now that might seem crazy since electrons drift through wires at about .0000000001% the speed of light - so how can special relativity have anything to do with it? Well, the truth is there are enough electrons in a wire, and the electric interaction is so amazingly strong that even the minuscule effects of length contraction can produce significant charge imbalances that produce a noticeable force.

So special relativity explains electromagnets - but what about permanent magnets? Yeah! I mean there can't be electrical currents flowing around inside lumps of rock, can there? Click here to go to MinutePhysics where we'll explore magnetite, compasses and all the wizardry of permanent magnets.

More Articles

View All
Why I’m Selling My Stocks
What’s up, you guys? It’s Graham here, and the time has come for me to sell. This is after we’ve seen one of the strongest stock market recoveries in recent history. The S&P 500, the Nasdaq, and the Dow are all trading near their all-time high. But no…
Exclusive: A Conversation with Alex Honnold and Co-Directors of “Free Solo” | National Geographic
I definitely have a fear of death, same as anybody else, and I would very much like to not die while climbing. You know, I was this huge, huge wall. But all it takes is one move that doesn’t feel right for you not to be able to do it. Maybe in 2015, I st…
Kevin Hale - How to Work Together
Uh, these are some guys I saw in Kyoto, and they’re tearing down a scaffolding, and I just think they’re amazingly poetic in how they do their work. So, in a startup, founders basically have to figure out how to optimize for a relationship that lasts for…
How Ultrasound Can Deactivate Parts of the Brain
[Derek] How do you fix a brain that’s not working properly? Well, until now the only real option has been to open up the skull, implant electrical or optical fibers, or even remove parts of the brain. If you do something like surgery or ablation, even wit…
How to motivate and engage your kids in learning while at home
Hey everyone, welcome to our webinar! My name is Lauren Kwan, and I’m on the Khan Academy team. Today, I am joined by my co-worker, Dan Tu, and our special guest, Connor Corey. Connor is an expert teacher, a parent, and a Khan Academy ambassador, which me…
Solar Energy| Energy Resources and Consumption| AP Environmental science| Khan Academy
The sun is about 93 million miles away, which means it takes about eight minutes for light from the sun to reach Earth. But it’s still close enough for us to take advantage of solar energy, and why wouldn’t we want to? After all, solar energy is renewable…