yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mistakes when finding inflection points: not checking candidates | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Olga was asked to find where f of x is equal to x minus two to the fourth power has inflection points. This is her solution. So we look at her solution, and then they ask us: Is Olga's work correct? If not, what's her mistake?

So pause this video and see if you can figure this out.

All right, let's just follow her work. So here she's trying to take the first derivative. You would apply the chain rule: it would be four times x minus two to the third power times the derivative of x minus two, which is just one. So this checks out.

Then you take the derivative of this: it would be 3 times 4, which would be 12 times x minus 2 to the second power times the derivative of x minus 2, which is just 1. This is exactly what she has here: 12 times x minus 2 to the second power. That checks out. So step one's looking good for Olga.

Step two: the solution of the second derivative equaling zero is x equals two. That looks right. The second derivative is 12 times x minus two squared, and we want to make that equal to zero. This is only going to be true when x is equal to two. So step two is looking good.

Step three: Olga says f has an inflection point at x equals two. She's basing this just on the fact that the second derivative is 0 when x is equal to 2. Now, I have a problem with this because the fact that your second derivative is zero at x equals two makes two a nice candidate to check out. However, you can't immediately say that we have an inflection point there.

Remember, an inflection point is where we go from being concave upwards to concave downwards, or concave downwards to concave upwards. Speaking in the language of the second derivative, it means that the second derivative changes signs as we go from below x equals 2 to above x equals 2. But we have to test that, because it's not necessarily always the case.

So let's actually test it. Let's think about some intervals. Intervals? So let's think about the interval when we go from negative infinity to 2, and let's think about the interval where we go from 2 to positive infinity. If you want, you could have some test values; you could think about the sign of our second derivative, and then based on that, you could think about concavity—concavity of f.

So let's think about what's happening. You could take a test value. Let's say 1 is in this interval, and let's say 3 is in this interval. You could say 1 minus 2 squared is going to be, let's see, that's negative 1 squared, which is 1, and then you're just going to—this is just going to be 12. So this is going to be positive.

If you tried 3, 3 minus 2 squared is 1 times 12. Well, that's also going to be positive. So you're going to be concave upwards, at least at these test values. It looks like on either side of 2 that the sign of the second derivative is positive on either side of 2.

You might say, well, maybe I just need to find closer values. But if you inspect the second derivative here, you can see that this is never going to be negative. In fact, for any value other than x equals 2, this value right over here, since we're even if x minus 2 is negative, you're squaring it, which will make this entire thing positive, and then multiplying it times a positive value.

So for any value other than x equals 2, the sign of our second derivative is positive, which means that we're going to be concave upwards.

So we actually don't have an inflection point at x equals two because we are not switching signs as we go from values less than x equals two to values greater than x equals two. Our second derivative is not switching signs.

So once again, this is incorrect. We actually don't have an inflection point at x equals 2 because our second derivative does not switch signs as we cross x equals 2, which means our concavity does not change.

More Articles

View All
The rise of industrial capitalism | AP US History | Khan Academy
[Instructor] The period from the end of the Civil War to the start of the 20th Century was one of incredible economic transformation in the United States. In 1865, the United States was the 4th largest industrial economy in the world. By the 1890s, it had…
An Urgent Warning For Investors | The Coming Recession
What’s up guys, it’s Graham here. So, I think it’s about time that we address a topic that I’m sure a lot of us have considered, and that would be an upcoming recession. After all, in the last few weeks, the yield curve began to flatten as an early recess…
He Hears Music in the Quietest Place on Earth—Can You? | Short Film Showcase
I like to say that silence is the think tank of the soul. Listening is something different. Listening means taking all sounds in with equal value. So instead of listening for a sound, I simply listen to the place. Today it’s the echo of the whole river br…
Bullet Block Explained!
In my last video, we performed an experiment in which two identical wood blocks were shot with the same rifle, one through the center of mass and the other one slightly off to one side. Now, if you haven’t seen that video yet, then click here now and go a…
Bill Ackman on Starting His Own Hedge Fund at 26 and Activist Investing
To put this in context, you were mid-20s and I had just gotten—I just started as a rookie professor two years before. So, Bill, at the time, was trying to set up an interesting business, which ultimately became Gotham Partners. So, for those of you who ar…
Reid Hoffman at Startup School SV 2016
[Applause] So, uh, up next needs no introduction. I’ll give a very quick one. Reed Hoffman, uh, has been in—yeah, please do—round of applause! You know what it sounds like; you all know who he is. I’ll skip the introduction. All right, for the first que…