yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mistakes when finding inflection points: not checking candidates | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Olga was asked to find where f of x is equal to x minus two to the fourth power has inflection points. This is her solution. So we look at her solution, and then they ask us: Is Olga's work correct? If not, what's her mistake?

So pause this video and see if you can figure this out.

All right, let's just follow her work. So here she's trying to take the first derivative. You would apply the chain rule: it would be four times x minus two to the third power times the derivative of x minus two, which is just one. So this checks out.

Then you take the derivative of this: it would be 3 times 4, which would be 12 times x minus 2 to the second power times the derivative of x minus 2, which is just 1. This is exactly what she has here: 12 times x minus 2 to the second power. That checks out. So step one's looking good for Olga.

Step two: the solution of the second derivative equaling zero is x equals two. That looks right. The second derivative is 12 times x minus two squared, and we want to make that equal to zero. This is only going to be true when x is equal to two. So step two is looking good.

Step three: Olga says f has an inflection point at x equals two. She's basing this just on the fact that the second derivative is 0 when x is equal to 2. Now, I have a problem with this because the fact that your second derivative is zero at x equals two makes two a nice candidate to check out. However, you can't immediately say that we have an inflection point there.

Remember, an inflection point is where we go from being concave upwards to concave downwards, or concave downwards to concave upwards. Speaking in the language of the second derivative, it means that the second derivative changes signs as we go from below x equals 2 to above x equals 2. But we have to test that, because it's not necessarily always the case.

So let's actually test it. Let's think about some intervals. Intervals? So let's think about the interval when we go from negative infinity to 2, and let's think about the interval where we go from 2 to positive infinity. If you want, you could have some test values; you could think about the sign of our second derivative, and then based on that, you could think about concavity—concavity of f.

So let's think about what's happening. You could take a test value. Let's say 1 is in this interval, and let's say 3 is in this interval. You could say 1 minus 2 squared is going to be, let's see, that's negative 1 squared, which is 1, and then you're just going to—this is just going to be 12. So this is going to be positive.

If you tried 3, 3 minus 2 squared is 1 times 12. Well, that's also going to be positive. So you're going to be concave upwards, at least at these test values. It looks like on either side of 2 that the sign of the second derivative is positive on either side of 2.

You might say, well, maybe I just need to find closer values. But if you inspect the second derivative here, you can see that this is never going to be negative. In fact, for any value other than x equals 2, this value right over here, since we're even if x minus 2 is negative, you're squaring it, which will make this entire thing positive, and then multiplying it times a positive value.

So for any value other than x equals 2, the sign of our second derivative is positive, which means that we're going to be concave upwards.

So we actually don't have an inflection point at x equals two because we are not switching signs as we go from values less than x equals two to values greater than x equals two. Our second derivative is not switching signs.

So once again, this is incorrect. We actually don't have an inflection point at x equals 2 because our second derivative does not switch signs as we cross x equals 2, which means our concavity does not change.

More Articles

View All
Are Drones a Threat? | Breakthrough
Hey, hello, hi! Can you see me now? We have communication at last. Chris Anderson believes drones will be a force for good; military technology journalist David Hamling has his doubts. So you’ve now got your own drone company. Um, so what’s the big challe…
_-substitution: definite integrals | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some practice applying u-substitution to definite integrals. So let’s say we have the integral. So we’re going to go from x equals 1 to x equals 2, and the integral is (2x \times (x^2 + 1)^3 \, dx). So, I alrea…
How parameters change as data is shifted and scaled | AP Statistics | Khan Academy
So I have some data here in a spreadsheet. You could use Microsoft Excel or you could use Google spreadsheets, and we’re going to use the spreadsheet to quickly calculate some parameters. Let’s say this is the population. Let’s say this is—we’re looking a…
Nuclear fission | Physics | Khan Academy
An atomic bomb and a nuclear power plant work on the same basic principle: nuclear fusion chain reactions. But what exactly is this? More importantly, if the same thing is happening inside both a bomb and a nuclear reactor, then why doesn’t the nuclear re…
#shorts How Will Robots Affect These Jobs?
Robots don’t pay taxes or even spend money in the local communities. They should preserve their jobs. My question to you is, can they stop progress? Uh, first of all, there’s no evidence that that’s true. There have been lots of studies on automation in …
3 tips for finding a job on YC's Work at a Startup
[Music] [Applause] [Music] [Applause] Thanks for joining Y Combinator’s Work at a Startup and welcome to the YSE network. I’m Ryan and I’m here to help you find your dream job. Y Combinator is an accelerator that has invested in companies like Coinbase, …