yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mistakes when finding inflection points: not checking candidates | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Olga was asked to find where f of x is equal to x minus two to the fourth power has inflection points. This is her solution. So we look at her solution, and then they ask us: Is Olga's work correct? If not, what's her mistake?

So pause this video and see if you can figure this out.

All right, let's just follow her work. So here she's trying to take the first derivative. You would apply the chain rule: it would be four times x minus two to the third power times the derivative of x minus two, which is just one. So this checks out.

Then you take the derivative of this: it would be 3 times 4, which would be 12 times x minus 2 to the second power times the derivative of x minus 2, which is just 1. This is exactly what she has here: 12 times x minus 2 to the second power. That checks out. So step one's looking good for Olga.

Step two: the solution of the second derivative equaling zero is x equals two. That looks right. The second derivative is 12 times x minus two squared, and we want to make that equal to zero. This is only going to be true when x is equal to two. So step two is looking good.

Step three: Olga says f has an inflection point at x equals two. She's basing this just on the fact that the second derivative is 0 when x is equal to 2. Now, I have a problem with this because the fact that your second derivative is zero at x equals two makes two a nice candidate to check out. However, you can't immediately say that we have an inflection point there.

Remember, an inflection point is where we go from being concave upwards to concave downwards, or concave downwards to concave upwards. Speaking in the language of the second derivative, it means that the second derivative changes signs as we go from below x equals 2 to above x equals 2. But we have to test that, because it's not necessarily always the case.

So let's actually test it. Let's think about some intervals. Intervals? So let's think about the interval when we go from negative infinity to 2, and let's think about the interval where we go from 2 to positive infinity. If you want, you could have some test values; you could think about the sign of our second derivative, and then based on that, you could think about concavity—concavity of f.

So let's think about what's happening. You could take a test value. Let's say 1 is in this interval, and let's say 3 is in this interval. You could say 1 minus 2 squared is going to be, let's see, that's negative 1 squared, which is 1, and then you're just going to—this is just going to be 12. So this is going to be positive.

If you tried 3, 3 minus 2 squared is 1 times 12. Well, that's also going to be positive. So you're going to be concave upwards, at least at these test values. It looks like on either side of 2 that the sign of the second derivative is positive on either side of 2.

You might say, well, maybe I just need to find closer values. But if you inspect the second derivative here, you can see that this is never going to be negative. In fact, for any value other than x equals 2, this value right over here, since we're even if x minus 2 is negative, you're squaring it, which will make this entire thing positive, and then multiplying it times a positive value.

So for any value other than x equals 2, the sign of our second derivative is positive, which means that we're going to be concave upwards.

So we actually don't have an inflection point at x equals two because we are not switching signs as we go from values less than x equals two to values greater than x equals two. Our second derivative is not switching signs.

So once again, this is incorrect. We actually don't have an inflection point at x equals 2 because our second derivative does not switch signs as we cross x equals 2, which means our concavity does not change.

More Articles

View All
Harris Proposes $50k Tax Break For Small Businesses
You’ve helped entrepreneurs jump start their small business. There’s also this proposal about a $50,000 tax deduction for businesses. How does that sound to you? Look, I’m very happy that you talked about small business because you got to remember her ad…
15 Differences Between Powerful and Powerless People
Some people command while others just complain. Some move the world while others get tossed around in the process. Welcome to Alux! The difference between powerful and powerless people often starts with their vision. Powerful people see beyond the horizon…
Changes in the AD-AS Model and the Phillips curve | APⓇ Macroeconomics | Khan Academy
In this video, we’re going to build on what we already know about aggregate demand and aggregate supply and the Phillips curve, and we’re going to connect these ideas. So first, the Phillips curve. This is a typical Phillips curve for an economy. High in…
Some Say This Goliath Fish, Once Overfished, Is Now a Nuisance | National Geographic
They are fish that can range from a tasty 30-pounder to something the size of a Volkswagen. You’ll see spots where this, you know, multiples like 14, 15, 20 Goliath Grouper swimming around. The Goliath Grouper population is getting out of hand. They were …
"It Really Wasn't the Bear's Fault": Grizzly Attack Survivor Reflects | National Geographic
We see them all the time, but they usually go the other direction. With the S Cubs, it’s a whole different category. When she saw me, she just basically said, “You’re [Music] next.” I was irrigating my ranch, and I have been doing this at that particular …
Quadratic systems: a line and a parabola | Equations | Algebra 2 | Khan Academy
We’re told the parabola given by ( y = 3x^2 - 6x + 1 ) and the line given by ( y - x + 1 = 0 ) are graphed. So you can see the parabola here in red and we can see the line here in blue. The first thing they ask us is, one intersection point is clearly id…