yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mistakes when finding inflection points: not checking candidates | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Olga was asked to find where f of x is equal to x minus two to the fourth power has inflection points. This is her solution. So we look at her solution, and then they ask us: Is Olga's work correct? If not, what's her mistake?

So pause this video and see if you can figure this out.

All right, let's just follow her work. So here she's trying to take the first derivative. You would apply the chain rule: it would be four times x minus two to the third power times the derivative of x minus two, which is just one. So this checks out.

Then you take the derivative of this: it would be 3 times 4, which would be 12 times x minus 2 to the second power times the derivative of x minus 2, which is just 1. This is exactly what she has here: 12 times x minus 2 to the second power. That checks out. So step one's looking good for Olga.

Step two: the solution of the second derivative equaling zero is x equals two. That looks right. The second derivative is 12 times x minus two squared, and we want to make that equal to zero. This is only going to be true when x is equal to two. So step two is looking good.

Step three: Olga says f has an inflection point at x equals two. She's basing this just on the fact that the second derivative is 0 when x is equal to 2. Now, I have a problem with this because the fact that your second derivative is zero at x equals two makes two a nice candidate to check out. However, you can't immediately say that we have an inflection point there.

Remember, an inflection point is where we go from being concave upwards to concave downwards, or concave downwards to concave upwards. Speaking in the language of the second derivative, it means that the second derivative changes signs as we go from below x equals 2 to above x equals 2. But we have to test that, because it's not necessarily always the case.

So let's actually test it. Let's think about some intervals. Intervals? So let's think about the interval when we go from negative infinity to 2, and let's think about the interval where we go from 2 to positive infinity. If you want, you could have some test values; you could think about the sign of our second derivative, and then based on that, you could think about concavity—concavity of f.

So let's think about what's happening. You could take a test value. Let's say 1 is in this interval, and let's say 3 is in this interval. You could say 1 minus 2 squared is going to be, let's see, that's negative 1 squared, which is 1, and then you're just going to—this is just going to be 12. So this is going to be positive.

If you tried 3, 3 minus 2 squared is 1 times 12. Well, that's also going to be positive. So you're going to be concave upwards, at least at these test values. It looks like on either side of 2 that the sign of the second derivative is positive on either side of 2.

You might say, well, maybe I just need to find closer values. But if you inspect the second derivative here, you can see that this is never going to be negative. In fact, for any value other than x equals 2, this value right over here, since we're even if x minus 2 is negative, you're squaring it, which will make this entire thing positive, and then multiplying it times a positive value.

So for any value other than x equals 2, the sign of our second derivative is positive, which means that we're going to be concave upwards.

So we actually don't have an inflection point at x equals two because we are not switching signs as we go from values less than x equals two to values greater than x equals two. Our second derivative is not switching signs.

So once again, this is incorrect. We actually don't have an inflection point at x equals 2 because our second derivative does not switch signs as we cross x equals 2, which means our concavity does not change.

More Articles

View All
Thin-layer chromatography (TLC) | Intermolecular forces and properties | AP Chemistry | Khan Academy
So let’s say that I have a vial of some mystery liquid right over here, and I want to start figuring out what’s going on there. The first step is to think about, is it just one substance or is it a mixture of multiple substances? The focus of this video i…
Ratios and double number lines
We’re told the double number line shows that five pounds of avocados cost nine dollars. So, what is going on here with this double number line? This shows how, as we increase the number of avocados, how the cost increases. For example, when we have zero …
Tornado Tree Mind Twister
Okay, smart man with your smart physics degree, let’s say your state gets ravaged by tornadoes. You go to the local EMA volunteer center; you volunteer. You and some buddies go out with chainsaws and try to do the best work you can to help people. Okay, …
15 Things To Reflect On This December
The goal is to be able to spend time with yourself and enjoy the company. Every year you’re going to get massive value. If you go through this list and give yourself a couple of minutes to think deeply. Here are 15 things to reflect on this December. Fir…
Kevin O'Leary REACTS To Graham Stephan's $10 MILLION DOLLAR Investment Portfolio
A lot of people don’t understand how debt can put you out of business if things go wrong. Imagine being in your 40s and being wiped out, having to go bankrupt. So, I want you to react to something. Sure. I have my entire portfolio—worth a little bit over…
Dividing by a two digit number
In this video, we’re going to get a little bit of practice dividing by a two-digit number. So let’s say that we have 4781 divided by 32. Pause this video and see if you can figure out what that’s going to be and if there is a remainder, figure out what th…