yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Approximating limits using tables | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

This video we're going to try to get a sense of what the limit as x approaches 3 of ( x^3 - 3x^2 ) over ( 5x - 15 ) is. And when I say get a sense, we're going to do that by seeing what values for this expression we get as x gets closer and closer to 3. Now, one thing that you might want to try out is: well, what happens to this expression when x is equal to 3?

Well then, it's going to be ( 3^3 - 3 \times 3^2 ) over ( 5 \times 3 - 15 ). So at ( x = 3 ), this expression is going to be, and see, the numerator we have ( 27 - 27 = 0 ) over ( 15 - 15 = 0 ). So this expression is actually not defined at ( x = 3 ). We get this indeterminate form; we get ( 0/0 ).

But let's see, even though the function, even though the expression is not defined, let's see if we can get a sense of what the limit might be. And to do that, I'm going to set up a table. So let me set up a table here, and actually, I'm going to set up two tables. So this is ( x ), and this is ( \frac{x^3 - 3x^2}{5x - 15} ). And actually, I'm going to do that again, and I'll tell you why in a second. So this is going to be ( x ), and this is ( \frac{x^3 - 3x^2}{5x - 15} ).

The reason why I set up two tables, I didn't have to do two tables; I could have done it all in one table. But hopefully, this will make it a little bit more intuitive. What I'm trying to do is on this left table, I'm going to let's try out x values that get closer and closer to 3 from the left, from values that are less than 3. So for example, we go to ( 2.9 ) and figure out what the expression equals when ( x ) is ( 2.9 ). But then we could try to get even a little bit closer than that; we could go to ( 2.99 ), and then we could go even closer than that; we could go to ( 2.999 ).

One way to think about it here is, as we try to figure out what this expression equals as we get closer and closer to 3, we're trying to approximate the limit from the left. So, limit from the left. And why do I say the left? Well, if you think about this on a coordinate plane, these are the x values that are to the left of 3, but we're getting closer and closer and closer, we're moving to the right. But these are the x values that are on the left side of 3; they're less than 3.

But we also, in order for the limit to exist, we have to be approaching the same thing from both sides, from both the left and the right. So we could also try to approximate the limit from the right. And so what values would those be? Well, those would be x values larger than 3. So we could say ( 3.1 ), but then we might want to get a little bit closer; we could go ( 3.01 ), but then we might want to get even closer to 3, ( 3.001 ). Every time we get closer and closer to 3, we're going to get a better approximation for—or we're going to get a better sense of what we are actually approaching.

So, let's get a calculator out and do this. And you could keep going ( 2.99999999 ), ( 3.0001 ). Now, one key idea here to point out before I even calculate what these are going to be: sometimes when people say the limit from both sides, or the limit from the left, or the limit from the right, they imagine that the limit from the left is negative values and the limit from the right are positive values. But as you can see here, the limit from the left are to the left of the x value that you're trying to find the limit at. So these aren't negative values; these are just approaching the 3 right over here from values less than 3. This is approaching the 3 from values larger than 3.

So now let's fill out this table, and I'm speeding up my work so that you don't have to sit through me typing everything into a calculator. So based on what we're seeing here, I would make the estimate that this looks like it's approaching ( 1.8 ). So is this equal to ( 1.8 )? As I said, in the future, we're going to be able to find this out exactly. But if you're not sure about this, you could try even closer and closer and closer values.

More Articles

View All
Time to Sell Stocks and Take Profits?
Hey guys, welcome back to the channel. In the last video, we were talking all about how expensive the market has gotten based on the turnaround that we’ve seen the last few months, and actually how far detached the market is from the economic reality that…
Comparing unit fractions
So which of the following numbers is a greater: one third or one fifth? Pause this video and try to answer that all right. Now let’s think about this together, and the way that I can best think about it is by visualizing them. So let’s imagine a hole. So…
My Response To MeetKevin | The Full Story
What’s up you guys? It’s Graham here. So I need to make a video about this because there’s a lot you need to hear. A little over three years ago, this guy reached out to me over email and said we had a lot in common. He told me that he had been watching …
Setting AI Policies for your School Districts: Part 2 of 2
So hello everyone. I’m Kristen Desero. I’m the Chief Learning Officer at KH Academy, and I’m going to, uh, let our two other panelists do quick introductions of themselves, and then we’ll get into discussions. Chris, you want to start first? Sure, I’m Ch…
The Big Risks Of Alibaba Stock (Delisting, Accounting, VIE, Anti-Monopoly)
Well, I said the next video I was going to be talking about the super investors, but you guys were very keen to discuss the risks behind Alibaba stock. So, I thought I’d better make this video first. In the last video, we did a deep dive on how Alibaba’s…
How to GET RICH with ChatGPT
What’s up, guys! It’s Grammy here. So, in the middle of a recession, one industry seems to be absolutely booming, with the promise of making a lot of people really rich—and that would be artificial intelligence. For example, I told OpenAI’s ChatGPT to wr…