yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Composing 3x3 matrices | Matrices | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So, we have two three by three matrices here: matrix A and matrix B. We could, of course, view each of them as a transformation in three-dimensional space.

Now, what we're going to think about in this video is the composition of A and B. So, you could think of this as the transformation where you apply B first, and then you apply A after that. Then, we can represent that by another 3x3 matrix, which is partially completed here. We have the first and the third column here, and so my question to you is: what is this middle column where I have these three blanks? Pause the video and try to work through that.

Alright, now let's work through this together. One way to think about how to construct A of B is that what you're doing is you're taking each of the columns of B and you're thinking about what they would be under the transformation A. So, if you were to apply the transformation A to this column right over here, you would get this column. If you apply the transformation A to this column right over here, you would get this column.

So, what we really need to do is apply the transformation A to this column, to the middle column right over here. And just as a reminder, how this transformation works: a vector (0, 2, 3) you can think of it as 0 of the (1, 0, 0) vector, the unit vector in the x direction, plus two of the (0, 1, 0) vector plus three of the (0, 0, 1) vector.

Now, when you apply the transformation, instead of using these unit vectors, you use the image of them under this transformation. And now, in this situation, instead of a (1, 0, 0) vector, we are going to be using this thing. Instead of a (0, 1, 0), we're going to be using this thing. Instead of a (0, 0, 1), we are going to be using this thing.

So, this middle column, what is transformed by this vector, is going to be zero instead of the (1, 0, 0) one. It's going to be zero of the (-3, -3, 3) vector, and then we have plus two, plus two of the zero let me do that in that purple color, of the (0, -2, 3) vector. Then, last but not least, you're going to have three of the plus three of them—I’ll do that in yellow—the (0, -4, 1) vector.

Now, we just quote do the math. So, when you apply zero times all of this, you're just going to have a (0, 0, 0) vector. So, we can let those all go away, and then you are left with, let’s see, this one is going to be 2 times 0 is 0. 2 times -2 is -4. 2 times 3 is 6. You're going to have that plus 3 times 0 is 0. 3 times -4 is -12. 3 times 1 is 3.

I could have written this a little bit neater but hopefully you get the idea. And then, when we add those two things: 0 plus 0 is 0. -4 plus -12 is -16. 6 plus 3 is 9. And we're done! We have just completed the composition of A of B.

More Articles

View All
Exposing THE TRUTH about Alex Becker ads...
Hmm, see, I wonder what’s on YouTube today. I decided to see what videos I can watch and how much I can learn. Hmm, wait a second, what’s this? Oh, Crank are Donuts always video on it should be good. If you give me 45 seconds, I’m gonna show you how am I …
Successful Pitch
These are the three attributes you find in every successful pitch. These are the ones that get a check, that actually start their journey funded on Shark Tank, that go into the ecosphere of Shark Tank, that get followed every year by all the networks, tha…
Finding zeros of polynomials (example 2) | Mathematics III | High School Math | Khan Academy
So I have the polynomial ( p(x) ) here, and ( p(x) ) is being expressed as a fourth degree polynomial times ( (3x - 8)^2 ). So this would actually give you some, this would give you ( 9x^2 ) and a bunch of other stuff, and then you multiply that times thi…
Bank balance sheets and fractional reserve banking | APⓇ Macroeconomics | Khan Academy
In this video, we’re going to talk about balance sheets, and in particular, balance sheets for banks and a fractional reserve lending system. Now, it’s not just banks that have balance sheets; all corporations have a balance sheet. You can even have your …
Photosynthesis evolution | Cellular energetics | AP Biology | Khan Academy
[Instructor] In this video, we are going to talk about the evolution of photosynthesis on Earth because that’s the only place that, at least so far, we’re aware of photosynthesis occurring. I personally believe that it’s occurring in many places in the un…
Teaching Electives with Khanmigo
Hi, I’m Michelle, a professional learning specialist here at Khan Academy and a former classroom teacher just like you. Meet Kigo, your AI-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many excitin…