yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Composing 3x3 matrices | Matrices | Precalculus | Khan Academy


2m read
·Nov 10, 2024

So, we have two three by three matrices here: matrix A and matrix B. We could, of course, view each of them as a transformation in three-dimensional space.

Now, what we're going to think about in this video is the composition of A and B. So, you could think of this as the transformation where you apply B first, and then you apply A after that. Then, we can represent that by another 3x3 matrix, which is partially completed here. We have the first and the third column here, and so my question to you is: what is this middle column where I have these three blanks? Pause the video and try to work through that.

Alright, now let's work through this together. One way to think about how to construct A of B is that what you're doing is you're taking each of the columns of B and you're thinking about what they would be under the transformation A. So, if you were to apply the transformation A to this column right over here, you would get this column. If you apply the transformation A to this column right over here, you would get this column.

So, what we really need to do is apply the transformation A to this column, to the middle column right over here. And just as a reminder, how this transformation works: a vector (0, 2, 3) you can think of it as 0 of the (1, 0, 0) vector, the unit vector in the x direction, plus two of the (0, 1, 0) vector plus three of the (0, 0, 1) vector.

Now, when you apply the transformation, instead of using these unit vectors, you use the image of them under this transformation. And now, in this situation, instead of a (1, 0, 0) vector, we are going to be using this thing. Instead of a (0, 1, 0), we're going to be using this thing. Instead of a (0, 0, 1), we are going to be using this thing.

So, this middle column, what is transformed by this vector, is going to be zero instead of the (1, 0, 0) one. It's going to be zero of the (-3, -3, 3) vector, and then we have plus two, plus two of the zero let me do that in that purple color, of the (0, -2, 3) vector. Then, last but not least, you're going to have three of the plus three of them—I’ll do that in yellow—the (0, -4, 1) vector.

Now, we just quote do the math. So, when you apply zero times all of this, you're just going to have a (0, 0, 0) vector. So, we can let those all go away, and then you are left with, let’s see, this one is going to be 2 times 0 is 0. 2 times -2 is -4. 2 times 3 is 6. You're going to have that plus 3 times 0 is 0. 3 times -4 is -12. 3 times 1 is 3.

I could have written this a little bit neater but hopefully you get the idea. And then, when we add those two things: 0 plus 0 is 0. -4 plus -12 is -16. 6 plus 3 is 9. And we're done! We have just completed the composition of A of B.

More Articles

View All
SUPERCUT: President Trump And First Lady Melania Trump Share Christmas Messages In First Term
My fellow Americans, Melania and I are delighted to wish America and the entire world a very Merry Christmas. At this time of year, we see the best of America and the soul of the American people. We see children packing boxes to brighten the Christmases o…
PPCs for increasing, decreasing and constant opportunity cost | AP Macroeconomics | Khan Academy
So we have three different possible production possibilities curves for rabbits and berries here, which we’ve already talked about in other videos. But the reason why I’m showing you three different curves is because these three different curves clearly h…
Mohnish Pabrai: How to Invest in an Overvalued Market (2021)
I never focus on what is happening in markets and, uh, you know, macro events and all of that. I think at the end of the day what matters is how does a particular business do over a long period of time. I think the important thing in investing is can I te…
How to Fix a Leaky Wooden Boat | Primal Survivor
NARRATOR: The boats may look simple, but their design is intricate and complex. Ta’u boatbuilders journey deep into the forest– [non-english speech] –to find the 11 different species of tree needed to make a [non-english]. Centuries of experience go into …
Indonesia's Coral Reefs - 360 | Into Water
Oceans are critical to keeping our global ecosystem in balance. They are home to hundreds of thousands of species, many of which are under threat. There are millions of people whose day-to-day survival depends on their continued health. [Music] My connec…
Domain and range from graphs of quadratic and exponential functions | Khan Academy
So what we want to do in this video is try to figure out the domain and ranges of G of X that’s depicted right over here and H of X that’s depicted over here. So pause this video and see if you can figure out the domain and range of each of these function…