yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Theoretical probability distribution example: multiplication | Probability & combinatorics


3m read
·Nov 10, 2024

We're told that Kai goes to a restaurant that advertises a promotion saying one in five customers get a free dessert. Suppose Kai goes to the restaurant twice in a given week, and each time he has a one-fifth probability of getting a free dessert. Let X represent the number of free desserts he gets in his two trips. Construct the theoretical probability distribution of X.

Alright, so pause this video and see if you can work through this before we do it together.

Alright, so first let's just think about the possible values that X could take on. This is the number of free desserts he gets, and he visits twice. So, there's some world in which he doesn't get any free desserts, so that's zero in his two visits. Maybe on one of the visits he gets a dessert, and the other one he doesn't. And maybe in both of his visits he actually is able to get a free dessert.

So, he's going to have some place from 0 to 2 free desserts in a given week. So we just have to figure out the probability of each of these.

So let's first of all think about the probability. Let me write it over here. The probability that capital X is equal to zero is going to be equal to what? Well, that's going to be the probability that he doesn't get a dessert on both days.

And it's important to realize that these are independent events. It's not like the restaurant's gonna say, "Oh, if you didn't get a dessert on one day, you're more likely to get another day," or somehow, "If you got it on a previous day, you're less likely on another day." They are independent events.

So the probability of not getting it on any one day is four out of five. The probability of not getting it on two of the days, I would just multiply them because they are independent events. So, 4 over 5 times 4 over 5.

So, the probability that X is equal to 0 is going to be 16 twenty-fifths, sixteen over twenty-five.

Now, what about the probability that X is equal to one? What is this going to be? Well, there are two scenarios over here. There's one scenario where, let's say on day one he does not get the dessert, and on day two he does get the dessert. But then, of course, there's the other scenario where on day one he gets the dessert, and then on day two he doesn't get the dessert.

These are the two scenarios where he's going to get X equals one. And so, if we add these together, let's see, four-fifths times one-fifth. This is going to be four over twenty-five, and then this is going to be four over twenty-five again.

And you add these two together, you're going to get eight twenty-fifths.

And then last but not least, and actually we could figure out this last one by subtracting 16 and 8 from 25, which would actually give us 1 twenty-fifth. But let's just write this out.

The probability that X equals 2 is the probability he gets a dessert on both days. So, one-fifth chance on day one and one-fifth chance on the second day. So, one-fifth times one-fifth is 1 twenty-fifth.

And you can do a reality check here; these all need to add up to one, and they do indeed add up to 1. 16 plus 8 plus 1 is 25, so 25 twenty-fifths is what they all add up to. And we're done.

More Articles

View All
Life Unlocks After These 15 Changes
92% of people want change. Every year, 76% of people die with the regret of allowing life to pass them by. Average job. Average home. Average partner. Despite nobody starting off looking for average yet, they still end up there. By the end of this video, …
Thunderstorms 101 | National Geographic
(Intriguing music) [Narrator] Off in the horizon, they rumble. Rolling across the land, they darken the skies to then spark fire in the darkness, letting out an unmistakable roar. Thunderstorms are rain showers accompanied by lightning and thunder. While…
Extraneous solutions of radical equations (example 2) | High School Math | Khan Academy
We’re asked which value for D we see D in this equation here makes x = -3 an extraneous solution for this radical equation. √(3x + 25) is equal to D + 2x, and I encourage you to pause the video and try to think about it on your own before we work through …
HOW TO LIVE AUTHENTICALLY AND EMBRACE YOUR TRUE SELF | STOICISM INSIGHTS
Welcome back Stoicism Insights viewers. Today we’re diving into an exploration that promises to challenge your perspectives and enrich your understanding of life. Get ready to embark on a journey of self-discovery and philosophical exploration like never …
Measuring angles with a circular protractor | Math | 4th grade | Khan Academy
Measure the angle in degrees. So here we have this blue angle that we want to measure in degrees, and it’s sitting on top of this circle. That circle is actually a protractor. Sometimes we see, and maybe what you’re used to seeing, is protractors that are…
Atomic spectra | Physics | Khan Academy
We can look at stars or nebulas or even planets which are very, very far away and estimate what composes them, what are the elements that are there inside of them. But how do we do that? How can we sit here on Earth and figure out what elements are presen…