yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Theoretical probability distribution example: multiplication | Probability & combinatorics


3m read
·Nov 10, 2024

We're told that Kai goes to a restaurant that advertises a promotion saying one in five customers get a free dessert. Suppose Kai goes to the restaurant twice in a given week, and each time he has a one-fifth probability of getting a free dessert. Let X represent the number of free desserts he gets in his two trips. Construct the theoretical probability distribution of X.

Alright, so pause this video and see if you can work through this before we do it together.

Alright, so first let's just think about the possible values that X could take on. This is the number of free desserts he gets, and he visits twice. So, there's some world in which he doesn't get any free desserts, so that's zero in his two visits. Maybe on one of the visits he gets a dessert, and the other one he doesn't. And maybe in both of his visits he actually is able to get a free dessert.

So, he's going to have some place from 0 to 2 free desserts in a given week. So we just have to figure out the probability of each of these.

So let's first of all think about the probability. Let me write it over here. The probability that capital X is equal to zero is going to be equal to what? Well, that's going to be the probability that he doesn't get a dessert on both days.

And it's important to realize that these are independent events. It's not like the restaurant's gonna say, "Oh, if you didn't get a dessert on one day, you're more likely to get another day," or somehow, "If you got it on a previous day, you're less likely on another day." They are independent events.

So the probability of not getting it on any one day is four out of five. The probability of not getting it on two of the days, I would just multiply them because they are independent events. So, 4 over 5 times 4 over 5.

So, the probability that X is equal to 0 is going to be 16 twenty-fifths, sixteen over twenty-five.

Now, what about the probability that X is equal to one? What is this going to be? Well, there are two scenarios over here. There's one scenario where, let's say on day one he does not get the dessert, and on day two he does get the dessert. But then, of course, there's the other scenario where on day one he gets the dessert, and then on day two he doesn't get the dessert.

These are the two scenarios where he's going to get X equals one. And so, if we add these together, let's see, four-fifths times one-fifth. This is going to be four over twenty-five, and then this is going to be four over twenty-five again.

And you add these two together, you're going to get eight twenty-fifths.

And then last but not least, and actually we could figure out this last one by subtracting 16 and 8 from 25, which would actually give us 1 twenty-fifth. But let's just write this out.

The probability that X equals 2 is the probability he gets a dessert on both days. So, one-fifth chance on day one and one-fifth chance on the second day. So, one-fifth times one-fifth is 1 twenty-fifth.

And you can do a reality check here; these all need to add up to one, and they do indeed add up to 1. 16 plus 8 plus 1 is 25, so 25 twenty-fifths is what they all add up to. And we're done.

More Articles

View All
The Economic Collapse of 2020 | What You MUST Know
What’s up you guys? It’s Graham here. So if you watch my videos for a while, you’ll know that every now and then I love to scour through the headlines and pick the ones that really stand out the most and lead to some really interesting discoveries. Today…
Taxes vs Duty (Clip) | To Catch a Smuggler | National Geographic
You purchased this. We have to add this up. All right. So how much is this adding up to? Do you understand? Well, that’s one side. It’s got to go on the other side. There’s exact prices of how much she paid. She has ten. $15,000 worth of gold. Are you …
Tracking users on the Internet | Internet safety | Khan Academy
So there’s a bunch of reasons why a website might want to track you, and depending on your opinion, you might think some of these are reasonable and you might think some of them are unreasonable. Just to understand, imagine if you were to go to, say, Khan…
Phishing attacks | Internet safety | Khan Academy
Let’s say you get an email like this where it looks like it is from PayPal. It says “response required” really big, so this is a little bit scary. It says, “Dear you, we emailed you a little while ago to ask you for your help resolving an issue with your …
Identifying and verifying a solution to a system | Grade 8 (TX TEKS) | Khan Academy
We’re told the system of linear equations below is graphed on the coordinate grid. So we can see the graph of ( y = -2X - 2 ) in blue here, and then ( Y = -\frac{1}{4}x + 5 ) in brown here. What I want you to first do before I do it with you is see if yo…
Mass spectrometry | Atomic structure and properties | AP Chemistry | Khan Academy
In other videos, we have talked about the idea that even for a given element, you might have different versions of that element. We call those different versions isotopes. Each isotope of an element can have a different atomic mass, and that stems from th…