yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Theoretical probability distribution example: multiplication | Probability & combinatorics


3m read
·Nov 10, 2024

We're told that Kai goes to a restaurant that advertises a promotion saying one in five customers get a free dessert. Suppose Kai goes to the restaurant twice in a given week, and each time he has a one-fifth probability of getting a free dessert. Let X represent the number of free desserts he gets in his two trips. Construct the theoretical probability distribution of X.

Alright, so pause this video and see if you can work through this before we do it together.

Alright, so first let's just think about the possible values that X could take on. This is the number of free desserts he gets, and he visits twice. So, there's some world in which he doesn't get any free desserts, so that's zero in his two visits. Maybe on one of the visits he gets a dessert, and the other one he doesn't. And maybe in both of his visits he actually is able to get a free dessert.

So, he's going to have some place from 0 to 2 free desserts in a given week. So we just have to figure out the probability of each of these.

So let's first of all think about the probability. Let me write it over here. The probability that capital X is equal to zero is going to be equal to what? Well, that's going to be the probability that he doesn't get a dessert on both days.

And it's important to realize that these are independent events. It's not like the restaurant's gonna say, "Oh, if you didn't get a dessert on one day, you're more likely to get another day," or somehow, "If you got it on a previous day, you're less likely on another day." They are independent events.

So the probability of not getting it on any one day is four out of five. The probability of not getting it on two of the days, I would just multiply them because they are independent events. So, 4 over 5 times 4 over 5.

So, the probability that X is equal to 0 is going to be 16 twenty-fifths, sixteen over twenty-five.

Now, what about the probability that X is equal to one? What is this going to be? Well, there are two scenarios over here. There's one scenario where, let's say on day one he does not get the dessert, and on day two he does get the dessert. But then, of course, there's the other scenario where on day one he gets the dessert, and then on day two he doesn't get the dessert.

These are the two scenarios where he's going to get X equals one. And so, if we add these together, let's see, four-fifths times one-fifth. This is going to be four over twenty-five, and then this is going to be four over twenty-five again.

And you add these two together, you're going to get eight twenty-fifths.

And then last but not least, and actually we could figure out this last one by subtracting 16 and 8 from 25, which would actually give us 1 twenty-fifth. But let's just write this out.

The probability that X equals 2 is the probability he gets a dessert on both days. So, one-fifth chance on day one and one-fifth chance on the second day. So, one-fifth times one-fifth is 1 twenty-fifth.

And you can do a reality check here; these all need to add up to one, and they do indeed add up to 1. 16 plus 8 plus 1 is 25, so 25 twenty-fifths is what they all add up to. And we're done.

More Articles

View All
The Upcoming Stock Market Collapse Of 2020
What’s up you guys? It’s Graham here. So over the last few weeks, I’ve definitely noticed a concerning new trend within the stock market, and that’s something worth addressing and discussing further. Because in the midst of record high unemployment, negat…
David Friedman. What About The Poor?
Some people have no money, no friends, and no assets. Would these people also have no rights in an anarcho-capitalist society? Now, if you have somebody with no money at all, and nobody who likes them is willing to help him out, he may not be able to affo…
Real reason why I don't laugh
Hi guys, before starting the video, I want to do a quick disclaimer about this video. This video is not for entertainment purposes, or this video would not add any value to your life. So if you’re not super curious about why I don’t love, maybe don’t watc…
Types of studies | AP Statistics | Khan Academy
In this video, we’re going to get our bearings on the different types of studies you might statistically analyze or statistical studies. So, first of all, it’s worth differentiating between an experiment and an observational study. I encourage you to pau…
10 Things I Stopped Buying | Financial Minimalism
What’s up you guys? It’s Graham here. So throughout my entire life, I’ve always made a conscious effort to evaluate my spending, cut back on what isn’t necessary, and focus on clearing out the clutter. But this year absolutely threw us all for a curveball…
Estate planning introduction | Insurance| Financial literacy | Khan Academy
So let’s talk a little bit about something that, frankly, I do not like to talk about and I don’t think most people like to talk about. That’s the notion of becoming very ill and dying, and then what happens to everyone that you leave behind. To understa…