yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Theoretical probability distribution example: multiplication | Probability & combinatorics


3m read
·Nov 10, 2024

We're told that Kai goes to a restaurant that advertises a promotion saying one in five customers get a free dessert. Suppose Kai goes to the restaurant twice in a given week, and each time he has a one-fifth probability of getting a free dessert. Let X represent the number of free desserts he gets in his two trips. Construct the theoretical probability distribution of X.

Alright, so pause this video and see if you can work through this before we do it together.

Alright, so first let's just think about the possible values that X could take on. This is the number of free desserts he gets, and he visits twice. So, there's some world in which he doesn't get any free desserts, so that's zero in his two visits. Maybe on one of the visits he gets a dessert, and the other one he doesn't. And maybe in both of his visits he actually is able to get a free dessert.

So, he's going to have some place from 0 to 2 free desserts in a given week. So we just have to figure out the probability of each of these.

So let's first of all think about the probability. Let me write it over here. The probability that capital X is equal to zero is going to be equal to what? Well, that's going to be the probability that he doesn't get a dessert on both days.

And it's important to realize that these are independent events. It's not like the restaurant's gonna say, "Oh, if you didn't get a dessert on one day, you're more likely to get another day," or somehow, "If you got it on a previous day, you're less likely on another day." They are independent events.

So the probability of not getting it on any one day is four out of five. The probability of not getting it on two of the days, I would just multiply them because they are independent events. So, 4 over 5 times 4 over 5.

So, the probability that X is equal to 0 is going to be 16 twenty-fifths, sixteen over twenty-five.

Now, what about the probability that X is equal to one? What is this going to be? Well, there are two scenarios over here. There's one scenario where, let's say on day one he does not get the dessert, and on day two he does get the dessert. But then, of course, there's the other scenario where on day one he gets the dessert, and then on day two he doesn't get the dessert.

These are the two scenarios where he's going to get X equals one. And so, if we add these together, let's see, four-fifths times one-fifth. This is going to be four over twenty-five, and then this is going to be four over twenty-five again.

And you add these two together, you're going to get eight twenty-fifths.

And then last but not least, and actually we could figure out this last one by subtracting 16 and 8 from 25, which would actually give us 1 twenty-fifth. But let's just write this out.

The probability that X equals 2 is the probability he gets a dessert on both days. So, one-fifth chance on day one and one-fifth chance on the second day. So, one-fifth times one-fifth is 1 twenty-fifth.

And you can do a reality check here; these all need to add up to one, and they do indeed add up to 1. 16 plus 8 plus 1 is 25, so 25 twenty-fifths is what they all add up to. And we're done.

More Articles

View All
S&P 500 Joke | Ponzi Factor | V-Log 5 (Thesis Part 1)
Hello everyone. This is Thanh again. Thank you for joining me, and today we are finally going to get into some real research. Not just that current event stuff, but some real stuff. Before I start, I want to mention I have not forgotten about the episode…
What Exactly is the Present?
At the 1939 world’s fair in New York, the exciting new tech was the live television broadcast. Roosevelt became the first president to address the nation live on TV. But for years leading up to this event, engineers have been working on one particular tec…
Why We’re All Burning Out | Byung-Chul Han’s Warning to the World
Aren’t we living in the best age ever!? I mean, look at the world around us! Modern society grants us endless possibilities. Contrary to our grandparents (and their parents), who were told to just pray to God, have kids, work in the factory, and shut up, …
How I find private jet clients.
This is the interior of our Airbus 319. Wow, it’s an airplane! I built the airplane, which is the same airplane that EasyJet buys around. Of course, we’re seating 12 people in there, seating 212 people. You do meet things in there. So, what we do sometim…
Worked example: Parametric arc length | AP Calculus BC | Khan Academy
Let’s say that X is a function of the parameter T, and it’s equal to cosine of T, and Y is also defined as a function of T, and it’s equal to sine of T. We want to find the arc length of the curve traced out, so the length of the curve from T equals 0 to …
_-substitution: definite integrals | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some practice applying u-substitution to definite integrals. So let’s say we have the integral. So we’re going to go from x equals 1 to x equals 2, and the integral is (2x \times (x^2 + 1)^3 \, dx). So, I alrea…