yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits of piecewise functions | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's think a little bit about limits of piecewise functions that are defined algebraically like our F of x right over here. Pause this video and see if you can figure out what these various limits would be. Some of them are one-sided and some of them are regular limits or two-sided limits.

All right, let's start with this first one: the limit as x approaches four from values larger than or equal to four. So that's what that plus tells us. When x is greater than 4, our f of x is equal to √(x). So, as we are approaching four from the right, we are really thinking about this part of the function. This is going to be equal to the square root of four. Even though right at four our f of x is equal to this, we are approaching from values greater than four. We're approaching from the right, so we would use this part of our function definition. This is going to be equal to two.

Now, what about our limit of f of x as we approach four from the left? Well, then we would use this part of our function definition. This is going to be equal to 4 + 2 over 4 - 1, which is equal to 6 over 3, which is equal to two. If we want to say what is the limit of f of x as x approaches 4, this is a good scenario here. From both the left and the right, as we approach x=4, we're approaching the same value.

We know that in order for the two-sided limit to have a limit, you have to be approaching the same thing from the right and the left, and we are. This is going to be equal to two. Now, what's the limit as x approaches two of f of x? As x approaches two, we are going to be completely in this scenario right over here. Interesting things do happen at x equals 1; here our denominator goes to zero, but at x=2, this part of the curve is going to be continuous.

We can just substitute the value; it's going to be 2 + 2 over 2 - 1, which is 4 over 1, which is equal to 4. Let's do another example. We have another piecewise function, so let's pause our video and figure out these things.

All right, now let's do this together. What's the limit as x approaches -1 from the right? If we're approaching from the right when we are greater than or equal to -1, we are in this part of our piecewise function. We would say this is going to approach 2 to the -1 power, which is equal to ½.

What about if we're approaching from the left? If we're approaching from the left, we're in this scenario right over here; we're to the left of x = -1. This is going to be equal to the sine, because we're in this case for our piecewise function of -1 + 1, which is the sine of 0, which is equal to 0.

Now what's the two-sided limit as x approaches -1 of G of x? Well, we're approaching two different values as we approach from the right and as we approach from the left. If our one-sided limits aren't approaching the same value, well then this limit does not exist. What's the limit of G of x as x approaches zero from the right?

Well, if we're talking about approaching zero from the right, we are going to be in this case right over here. Zero is definitely in this interval, and over this interval, this right over here is going to be continuous. So, we can just substitute x equals 0 there. It's going to be 2 to the 0, which is indeed equal to 1, and we're done.

More Articles

View All
Cost and duration of modern campaigns | US government and civics | Khan Academy
What we’re going to do in this video is talk about modern campaigns. In particular, we’re going to talk about the cost and the duration of modern campaigns, especially in the United States. This graphic here, which comes from the Campaign Finance Institut…
Polynomial special products: perfect square | Algebra 2 | Khan Academy
What we’re going to do in this video is practice squaring binomials. This is something that we’ve done in the past, but we’re going to do it with slightly more involved expressions. But let’s just start with a little bit of review. If I were to ask you, w…
How to Run a User Interview with Emmett Shear (How to Start a Startup 2014: Lecture 16)
Today’s guest speaker is Emmett Scheer. Emmett is the CEO of Twitch, which was acquired by Amazon, where he now works. Emmett is going to do a new format of class today and talk about how to do great user interviews. So this is the talking to users part o…
Homeroom with Sal & Pedro Noguera - Wednesday, October 21
Hi everyone, Sal Khan here. Welcome to the Homeroom live stream. We have a really exciting guest today, Pedro Noguera, who is the Dean of the Rossier School of Education at the University of Southern California. So start thinking of your questions, puttin…
Economic rights of citizenship | Citizenship | High school civics | Khan Academy
The last set of rights we’ll discuss in this lesson are the economic rights of citizens. These are the rights that citizens have to control their own property, labor, and working conditions. This includes all of the rights associated with your ability to …
Shifts in demand for labor | Microeconomics | Khan Academy
We are now going to continue our study of labor markets, and in this video we’re going to focus on the demand curve for labor. So, let’s imagine that we’re talking about a market for people who work in the pant-making industry. So each of these firms righ…