yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visualizing chemical equations using particulate models | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

A question that some of you might have asked, or maybe haven't asked, is where do we get our hydrogen from? Because molecular hydrogen, if it was just in the air, it is lighter than the other things that make up the air, so it would just float to the top of the atmosphere. So how would we get it?

Well, this reaction right over here is actually one of the most cost-effective ways of getting molecular hydrogen. What you do at a very high temperature, or what I would consider a high temperature, roughly between 700 and 1000 degrees Celsius, is you get some methane gas in the presence of water. Of course, water at that temperature is going to be a gas; we're talking about steam. Then they will react to produce carbon monoxide and molecular hydrogen.

Now, something might be feeling a little off when I wrote this reaction like this, so pause this video and think about what is off here. I'll give you a little bit of a hint: think about what are we inputting, what are the atoms and the number of atoms that we're inputting into the reaction, and then what are the number and the types of atoms that we are outputting. For example, we have one carbon that we are inputting between the methane and the water, and we have one carbon that we are getting out on the other side. Think about that for the oxygen and the hydrogens, and see whether it all makes sense.

All right, now let's work through this together. Actually, to help us visualize, instead of just writing it in this form, I'm also going to try to visualize the various molecules. So, this right over here is a methane molecule. You have one carbon that is bonded to four hydrogens; you can see that up there, CH4.

Here we have a water molecule; you have an oxygen that is bonded to two hydrogens. Then they react: you get a carbon monoxide molecule, at least how I've visualized it, so you have a carbon and an oxygen. Then I draw the molecular hydrogen. Molecular hydrogen has two hydrogens bonded to each other, and that is what I have depicted here.

Now, based on the hint I gave you before, I asked you to pause the video. You would notice that we have a carbon on the input side; you have it right there, and we have one carbon on the output side, so that seems to obey conservation of mass. Now, what about the oxygens? Well, we have one oxygen between the methane and the water that we're inputting into the reaction, and we have it drawn right over here. Then we have one oxygen that we are outputting on the output side of our reaction right over here.

Now, what about the hydrogens? Well, on the left side of our reaction right over here, we have four hydrogens plus another two, or six hydrogens. You can also count them here: one, two, three, four, five, six hydrogens. Well, on the right-hand side, we only have two hydrogens, and they're in one hydrogen molecule.

So, what happened to the other four hydrogens? They can't just disappear; we have to have conservation of mass. So, we need to have another four hydrogens on the right-hand side of this equation. Well, how can we have another four hydrogens? Well, that's if we have two more molecules of hydrogen. So that's one, and then that is two.

So, instead of just having one molecule of molecular hydrogen that has two hydrogen atoms in it, we now have three. So, to balance this chemical equation, all we have to do is say, okay, we don't just have one molecule of hydrogen here; we have three molecules of hydrogen. What I have just done is balance the chemical equation. It's just making sure that we have a conservation of mass, that we don't have constituent atoms on the left-hand side that somehow disappear on the right-hand side, or we don't have constituent atoms that somehow appear on the right-hand side without ever being input into the reaction.

More Articles

View All
Isolation - Mind Field (Ep 1)
[Music] Imagine being confined to a 10 by 10 foot room in complete isolation. No timekeeping devices, no phones, no books, nothing to write on, no windows. [Music] Psychologists say that fewer than three days in a room like this can lead to brain damage. …
Student tips for using Mastery Goals on Khan Academy
Hello and welcome to our video on Mastery goals! Let’s review a few tips to ensure you are making the most out of your learning experience while working on Khan Academy. First, let’s make sure you’re logged into your Khan Academy account by checking for …
15 Ways to Get Out of Your Slump
Damn the big slump. The one where two full nights of sleep and takeout on TV on the couch don’t help you. It’s been weeks. You still feel like crap. This is the worst time to feel that way. You need to be on your game. So what do you do? Slumps are a par…
The Upcoming 2021 Real Estate Collapse Explained
What’s up you guys, it’s Graham here. So today we’re literally going to be talking about my favorite topic in the entire world. And I know you think this might be a setup for me to say, “And that topic is asking you to smash that like button for the YouTu…
How Wildlife Is Bouncing Back In This African Park | National Geographic
Love, love, passion! Show up! That is easy for you to become a ranger. When I came here in 1993, there was no animals. My jet air was empty before tourism, before bringing animals, before everything. There’s a need for a team to protect my Jetta. I remem…
Why Scorpions Glow in the Dark
Finding scorpions in the desert at night is surprisingly easy. All you need is an ultraviolet torch because scorpions are incredibly fluorescent. Fluorescence means their bodies absorb ultraviolet light and reradiate it in the visible part of the spectrum…