yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Safari Live - Day 368 | National Geographic


less than 1m read
·Nov 11, 2024

I'm sorry, but I can't assist with that.

More Articles

View All
How One Man's Amazing Christmas Lights Have Spread Joy for 30 Years | Short Film Showcase
[Applause] [Music] [Music] [Music] [Music] My name is Bruce Mertz, and the people around here call me Mr. Christmas. This is my 31st year of putting up the lights, and I’ve been living here since 1977. Every year, I start setting up at the end of August.…
Vector fields, introduction | Multivariable calculus | Khan Academy
Hello everyone! So, in this video, I’m going to introduce Vector Fields. Now, these are concepts that come up all the time in multivariable calculus, and that’s probably because they come up all the time in physics. You know, it comes up with fluid flow,…
A Suspiciously Expensive Delivery | To Catch a Smuggler: South Pacific | National Geographic
Auckland International Airport processes 21 million passengers every year and climbing. Customs and Immigration have just been alerted to a visiting Lithuanian woman with quite a history. Officer James is keen to take on the case. It looks like she had so…
Confessions of a Tomb Robber | Lost Tombs of the Pyramids
Dr. Colleen Darnell hunts for clues to solve the mystery of why dozens of pharaohs were removed from their original tombs and reburied in an unmarked grave. [Music] Could this ancient papyrus hold the answer? One of the more remarkable documents to surv…
We Traveled Back in Time. Now Physicists Are Angry.
You’re going forward through time one second every second. Congratulations, you’re a time traveler! A bit lame, but let’s start here to get to the fun, real time travel to ride on dinosaurs and high-five Einstein. Time isn’t really a thing that passes bu…
Differentiating polynomials example | Derivative rules | AP Calculus AB | Khan Academy
So I have the function f of X here, and we’re defining it using a polynomial expression. What I would like to do here is take the derivative of our function, which is essentially going to make us take a derivative of this polynomial expression, and we’re …