yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trick involving Maclaurin expansion of cosx


3m read
·Nov 11, 2024

The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ).

So one thing that you're immediately going to find, let's just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynomial. We're going to evaluate ( f ) at zero. That's why it's a McLaurin series; it's going to be centered at zero. It's a Taylor series centered at zero plus ( f'(0) \cdot x ) plus ( \frac{f''(0) \cdot x^2}{2} + \frac{f'''(0) \cdot x^3}{3!} ) and we keep going on and on and on forever.

What you're immediately going to find is when you start taking the derivatives of ( f ) and then the second, third, fourth, and fifth derivatives, you're actually going to have to take a bunch of derivatives here. Every time you're going to have to apply the product rule. This is going to get very hairy very, very fast.

So there's actually a trick to this problem. What we want to do, we could find the McLaurin series. We can find the first three nonzero terms of the McLaurin series for ( \cos(x) ) and then just multiply that by ( x ). Because, you know, if we just have ( x \cos(x) ), you could use the same thing as ( x \times ).

Or another way of saying it is the first three terms of the McLaurin expansion for this is just going to be ( x ) times the first three terms of the McLaurin expansion for ( \cos(x) ). So let's do that. To do that, let's think about the various derivatives of ( \cos(x) ).

So if ( f(x) ), let me use a different letter here for the function, if ( g(x) = \sin(x) ), then ( g(0) = 1 ). The first derivative would be equal to ( \sin(x) ), so the first derivative evaluated at zero is zero. The sine of anything or, negative sine of zero, I should say, is going to be zero.

Then the second derivative, well, the derivative of sine is cosine, so it's negative sine. The second derivative evaluated at zero is going to be equal to -1. You might start seeing a pattern here. The third derivative of ( \sin(x) ) is equal to ( \cos(x) ). If I evaluate the third derivative at zero, I'm going to get zero again.

When I take the derivative of this, when I take the fourth derivative, I get back to cosine. The fourth derivative is the same thing as the function, so the fourth derivative evaluated at zero, this is also going to be zero. The fifth derivative evaluated at zero, this cycles. This is going to be the sixth derivative evaluated at zero, this is going to be the seventh derivative evaluated at zero.

So what are the first three nonzero terms? Let's see, it's going to be this one, it's going to be this one, and it is going to be this one. We have, or let me just do it for ( \cos(x) ), so let me write this down. You might already know the first three nonzero terms of the McLaurin series for ( \cos(x) ), but I'm finding it here for us.

So ( \cos(x) ) is approximately equal to... The first term here is just ( \cos(0) ), so that's just 1. Then the next one is going to be our second derivative, so it's ( -\frac{1}{2!} x^2 ). This is the one that involves the second derivative, ( x^2 ). Then we're going to involve the fourth derivative and the coefficient ( 1 ). So it's going to be ( +\frac{1}{4!} x^4 ).

If it involves the fourth derivative, well, it's going to be divided by four factorial. So it's going to be times ( x^4 ). And there you have it. These are the first three nonzero terms of the McLaurin series for ( \cos(x) ).

Then we can say ( x \cos(x) ), so ( x \cdot \cos(x) ). I'm just going to multiply each of these things by ( x ). So I'm multiplying one side, the thing, but I'm multiplying both sides by ( x ). So I'm getting ( x - \frac{1}{2!} x^3 + \frac{1}{4!} x^5 ) and we're done.

Even though this might have seemed a little hairy and a bit of a long process, and some people have it somewhat committed to memory, what the McLaurin series expansion of ( \cos(x) ) and ( \sin(x) ) are, and sometimes ( e^x ) as well. Then this could be a very fast process where you just multiply that by ( x ).

But as you can see, even finding that McLaurin series expansion for ( \cos(x) ) isn't too bad. If you had done it the other way, if you just tried to take the first, second, third, fourth, fifth, or all the way to the fourth derivative of this and evaluate at zero, it would have gotten very, very, very hairy.

More Articles

View All
How to sell a $13,000,000 private jet!
If you could just give me an idea of, uh, you know what sort of asking price you guys are looking for it. I think on that aircraft is somewhere around 13, uh, 13, 13 and a half, something like that. Is that in the price range you’re talking about? You’r…
Where Do Great Startup Ideas Come From? – Dalton Caldwell and Michael Seibel
In all three of these cases, these folks had the problem they had experience with, and in hindsight, there was an obvious opportunity to make something 10x better. But most people thought they were idiots, and that’s probably the overarching theme. They h…
How to motivate and engage your kids in learning while at home
Hey everyone, welcome to our webinar! My name is Lauren Kwan, and I’m on the Khan Academy team. Today, I am joined by my co-worker, Dan Tu, and our special guest, Connor Corey. Connor is an expert teacher, a parent, and a Khan Academy ambassador, which me…
At the Intersection of AI, Governments, and Google - Tim Hwang
All right everyone, so today we have Tim Wong, and we are live from Tim Wong’s apartment. I’m Francisco. Alright man, so I think the easiest way to do this was just to introduce yourself. Okay, cool. So, well, thanks for having me on the show, Craig. My …
Graphing a circle from its standard equation | Mathematics II | High School Math | Khan Academy
[Voiceover] Whereas to graph the circle (x + 5) squared plus (y - 5) squared equals four. I know what you’re thinking. What’s all of this silliness on the right-hand side? This is actually just the view we use when we’re trying to debug things on Khan Aca…
Determining angle of rotation
We’re told that triangle A’B’C’ (so that’s this red triangle over here) is the image of triangle ABC (so that’s this blue triangle here) under rotation about the origin. So, we’re rotating about the origin here. Determine the angle of rotation. So, like …