yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trick involving Maclaurin expansion of cosx


3m read
·Nov 11, 2024

The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ).

So one thing that you're immediately going to find, let's just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynomial. We're going to evaluate ( f ) at zero. That's why it's a McLaurin series; it's going to be centered at zero. It's a Taylor series centered at zero plus ( f'(0) \cdot x ) plus ( \frac{f''(0) \cdot x^2}{2} + \frac{f'''(0) \cdot x^3}{3!} ) and we keep going on and on and on forever.

What you're immediately going to find is when you start taking the derivatives of ( f ) and then the second, third, fourth, and fifth derivatives, you're actually going to have to take a bunch of derivatives here. Every time you're going to have to apply the product rule. This is going to get very hairy very, very fast.

So there's actually a trick to this problem. What we want to do, we could find the McLaurin series. We can find the first three nonzero terms of the McLaurin series for ( \cos(x) ) and then just multiply that by ( x ). Because, you know, if we just have ( x \cos(x) ), you could use the same thing as ( x \times ).

Or another way of saying it is the first three terms of the McLaurin expansion for this is just going to be ( x ) times the first three terms of the McLaurin expansion for ( \cos(x) ). So let's do that. To do that, let's think about the various derivatives of ( \cos(x) ).

So if ( f(x) ), let me use a different letter here for the function, if ( g(x) = \sin(x) ), then ( g(0) = 1 ). The first derivative would be equal to ( \sin(x) ), so the first derivative evaluated at zero is zero. The sine of anything or, negative sine of zero, I should say, is going to be zero.

Then the second derivative, well, the derivative of sine is cosine, so it's negative sine. The second derivative evaluated at zero is going to be equal to -1. You might start seeing a pattern here. The third derivative of ( \sin(x) ) is equal to ( \cos(x) ). If I evaluate the third derivative at zero, I'm going to get zero again.

When I take the derivative of this, when I take the fourth derivative, I get back to cosine. The fourth derivative is the same thing as the function, so the fourth derivative evaluated at zero, this is also going to be zero. The fifth derivative evaluated at zero, this cycles. This is going to be the sixth derivative evaluated at zero, this is going to be the seventh derivative evaluated at zero.

So what are the first three nonzero terms? Let's see, it's going to be this one, it's going to be this one, and it is going to be this one. We have, or let me just do it for ( \cos(x) ), so let me write this down. You might already know the first three nonzero terms of the McLaurin series for ( \cos(x) ), but I'm finding it here for us.

So ( \cos(x) ) is approximately equal to... The first term here is just ( \cos(0) ), so that's just 1. Then the next one is going to be our second derivative, so it's ( -\frac{1}{2!} x^2 ). This is the one that involves the second derivative, ( x^2 ). Then we're going to involve the fourth derivative and the coefficient ( 1 ). So it's going to be ( +\frac{1}{4!} x^4 ).

If it involves the fourth derivative, well, it's going to be divided by four factorial. So it's going to be times ( x^4 ). And there you have it. These are the first three nonzero terms of the McLaurin series for ( \cos(x) ).

Then we can say ( x \cos(x) ), so ( x \cdot \cos(x) ). I'm just going to multiply each of these things by ( x ). So I'm multiplying one side, the thing, but I'm multiplying both sides by ( x ). So I'm getting ( x - \frac{1}{2!} x^3 + \frac{1}{4!} x^5 ) and we're done.

Even though this might have seemed a little hairy and a bit of a long process, and some people have it somewhat committed to memory, what the McLaurin series expansion of ( \cos(x) ) and ( \sin(x) ) are, and sometimes ( e^x ) as well. Then this could be a very fast process where you just multiply that by ( x ).

But as you can see, even finding that McLaurin series expansion for ( \cos(x) ) isn't too bad. If you had done it the other way, if you just tried to take the first, second, third, fourth, fifth, or all the way to the fourth derivative of this and evaluate at zero, it would have gotten very, very, very hairy.

More Articles

View All
iPhone Programing (Hello World)
Hey guys, this is Matt. Kids, I don’t want this. This is going to be a video on developing for the iPhone. That’s right, developing for the iPhone! Some of you already have Xcode and have downloaded the iPhone SDK to program your own app for the iPhone, a…
Definite integral of sine and cosine product
We’re in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it’ll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we…
2016 Lecture 06 Part II: Maps of Meaning: An example of primordial narrative
But I want to tell you a story now, and it has these characters in it. And so this is a very important story, and it’s called the Enuma Elish. It’s the Mesopotamian creation myth, and it’s important for a bunch of reasons. First of all, it’s the oldest w…
How to Stop Procrastinating
The greatest hindrance to living is expectancy, which depends upon the morrow and wastes to-day. — Seneca When we procrastinate, we are immersed in future thinking and unable to do the work that we had planned to do in the present moment. The consequence…
Top 10 Free Mac Apps
Hey guys, this is Mac Heads 101, and today I’m going to be doing a video of the top 10 free applications you can get for your Mac. So my first one you’ve probably already heard of, but I really love it. I think you’ll love it too. It’s called Firefox, an…
Dalton Caldwell's Whale AMA
Right now I’m interested in things like food, transportation, housing—the stuff that every person spends a huge percentage of their paycheck on every month. Um, if you look at how much value has been unlocked by things like Uber and Airbnb, I think there …