yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trick involving Maclaurin expansion of cosx


3m read
·Nov 11, 2024

The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ).

So one thing that you're immediately going to find, let's just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynomial. We're going to evaluate ( f ) at zero. That's why it's a McLaurin series; it's going to be centered at zero. It's a Taylor series centered at zero plus ( f'(0) \cdot x ) plus ( \frac{f''(0) \cdot x^2}{2} + \frac{f'''(0) \cdot x^3}{3!} ) and we keep going on and on and on forever.

What you're immediately going to find is when you start taking the derivatives of ( f ) and then the second, third, fourth, and fifth derivatives, you're actually going to have to take a bunch of derivatives here. Every time you're going to have to apply the product rule. This is going to get very hairy very, very fast.

So there's actually a trick to this problem. What we want to do, we could find the McLaurin series. We can find the first three nonzero terms of the McLaurin series for ( \cos(x) ) and then just multiply that by ( x ). Because, you know, if we just have ( x \cos(x) ), you could use the same thing as ( x \times ).

Or another way of saying it is the first three terms of the McLaurin expansion for this is just going to be ( x ) times the first three terms of the McLaurin expansion for ( \cos(x) ). So let's do that. To do that, let's think about the various derivatives of ( \cos(x) ).

So if ( f(x) ), let me use a different letter here for the function, if ( g(x) = \sin(x) ), then ( g(0) = 1 ). The first derivative would be equal to ( \sin(x) ), so the first derivative evaluated at zero is zero. The sine of anything or, negative sine of zero, I should say, is going to be zero.

Then the second derivative, well, the derivative of sine is cosine, so it's negative sine. The second derivative evaluated at zero is going to be equal to -1. You might start seeing a pattern here. The third derivative of ( \sin(x) ) is equal to ( \cos(x) ). If I evaluate the third derivative at zero, I'm going to get zero again.

When I take the derivative of this, when I take the fourth derivative, I get back to cosine. The fourth derivative is the same thing as the function, so the fourth derivative evaluated at zero, this is also going to be zero. The fifth derivative evaluated at zero, this cycles. This is going to be the sixth derivative evaluated at zero, this is going to be the seventh derivative evaluated at zero.

So what are the first three nonzero terms? Let's see, it's going to be this one, it's going to be this one, and it is going to be this one. We have, or let me just do it for ( \cos(x) ), so let me write this down. You might already know the first three nonzero terms of the McLaurin series for ( \cos(x) ), but I'm finding it here for us.

So ( \cos(x) ) is approximately equal to... The first term here is just ( \cos(0) ), so that's just 1. Then the next one is going to be our second derivative, so it's ( -\frac{1}{2!} x^2 ). This is the one that involves the second derivative, ( x^2 ). Then we're going to involve the fourth derivative and the coefficient ( 1 ). So it's going to be ( +\frac{1}{4!} x^4 ).

If it involves the fourth derivative, well, it's going to be divided by four factorial. So it's going to be times ( x^4 ). And there you have it. These are the first three nonzero terms of the McLaurin series for ( \cos(x) ).

Then we can say ( x \cos(x) ), so ( x \cdot \cos(x) ). I'm just going to multiply each of these things by ( x ). So I'm multiplying one side, the thing, but I'm multiplying both sides by ( x ). So I'm getting ( x - \frac{1}{2!} x^3 + \frac{1}{4!} x^5 ) and we're done.

Even though this might have seemed a little hairy and a bit of a long process, and some people have it somewhat committed to memory, what the McLaurin series expansion of ( \cos(x) ) and ( \sin(x) ) are, and sometimes ( e^x ) as well. Then this could be a very fast process where you just multiply that by ( x ).

But as you can see, even finding that McLaurin series expansion for ( \cos(x) ) isn't too bad. If you had done it the other way, if you just tried to take the first, second, third, fourth, fifth, or all the way to the fourth derivative of this and evaluate at zero, it would have gotten very, very, very hairy.

More Articles

View All
HOW TO PROFIT CHURNING BANK ACCOUNTS IN 2019
What’s up guys? It’s Graham here. So really quick, I want you to ask yourself these three very important questions. Number one: Do you want to make an easy 500 bucks? Number two: Do you have some free time on your hands that you can kill? And number th…
Fixed Points
Hey, Vsauce! Michael here. There is an art museum on the moon. Supposedly. We can’t be sure until we go back and check. But as the story goes, in 1969, Fred Wall Tower from Bell Laboratories and sculptor Forrest Myers convinced an engineer working on the…
The Price of Adventure | Podcast | Overheard at National Geographic
Put yourself for a moment in the snow boots of a young Max Lowe. Several years ago, he was on an expedition with three of the world’s most famous mountaineers: author John Krakauer, professional snowboarder Jeremy Jones, and the leader of the North Face a…
How To Price For B2B | Startup School
[Music] Hi there, my name is Tom, and I’m a partner here at Y Combinator. Today, I’m going to be talking about one of the most common questions I get from founders, which is how to price. So, the founder’s been working on outbound sales, contacting peop…
Compound-complex sentences | Syntax | Khan Academy
Hello Garans, hello Rosie, hi Paige. So in this video, we’re going to talk about compound complex sentences. We just covered complex sentences in the last video, which is where you’ve got a simple sentence or one independent clause, and then that’s accomp…
Subtracting multi digit numbers with regrouping
[Instructor] What we’re gonna do in this video is figure out what 389,002 minus 76,151 is. Like always, I encourage you to pause the video and try to figure it out on your own. That’s the best way to really, even if you’re not able to figure out, or if …