yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trick involving Maclaurin expansion of cosx


3m read
·Nov 11, 2024

The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ).

So one thing that you're immediately going to find, let's just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynomial. We're going to evaluate ( f ) at zero. That's why it's a McLaurin series; it's going to be centered at zero. It's a Taylor series centered at zero plus ( f'(0) \cdot x ) plus ( \frac{f''(0) \cdot x^2}{2} + \frac{f'''(0) \cdot x^3}{3!} ) and we keep going on and on and on forever.

What you're immediately going to find is when you start taking the derivatives of ( f ) and then the second, third, fourth, and fifth derivatives, you're actually going to have to take a bunch of derivatives here. Every time you're going to have to apply the product rule. This is going to get very hairy very, very fast.

So there's actually a trick to this problem. What we want to do, we could find the McLaurin series. We can find the first three nonzero terms of the McLaurin series for ( \cos(x) ) and then just multiply that by ( x ). Because, you know, if we just have ( x \cos(x) ), you could use the same thing as ( x \times ).

Or another way of saying it is the first three terms of the McLaurin expansion for this is just going to be ( x ) times the first three terms of the McLaurin expansion for ( \cos(x) ). So let's do that. To do that, let's think about the various derivatives of ( \cos(x) ).

So if ( f(x) ), let me use a different letter here for the function, if ( g(x) = \sin(x) ), then ( g(0) = 1 ). The first derivative would be equal to ( \sin(x) ), so the first derivative evaluated at zero is zero. The sine of anything or, negative sine of zero, I should say, is going to be zero.

Then the second derivative, well, the derivative of sine is cosine, so it's negative sine. The second derivative evaluated at zero is going to be equal to -1. You might start seeing a pattern here. The third derivative of ( \sin(x) ) is equal to ( \cos(x) ). If I evaluate the third derivative at zero, I'm going to get zero again.

When I take the derivative of this, when I take the fourth derivative, I get back to cosine. The fourth derivative is the same thing as the function, so the fourth derivative evaluated at zero, this is also going to be zero. The fifth derivative evaluated at zero, this cycles. This is going to be the sixth derivative evaluated at zero, this is going to be the seventh derivative evaluated at zero.

So what are the first three nonzero terms? Let's see, it's going to be this one, it's going to be this one, and it is going to be this one. We have, or let me just do it for ( \cos(x) ), so let me write this down. You might already know the first three nonzero terms of the McLaurin series for ( \cos(x) ), but I'm finding it here for us.

So ( \cos(x) ) is approximately equal to... The first term here is just ( \cos(0) ), so that's just 1. Then the next one is going to be our second derivative, so it's ( -\frac{1}{2!} x^2 ). This is the one that involves the second derivative, ( x^2 ). Then we're going to involve the fourth derivative and the coefficient ( 1 ). So it's going to be ( +\frac{1}{4!} x^4 ).

If it involves the fourth derivative, well, it's going to be divided by four factorial. So it's going to be times ( x^4 ). And there you have it. These are the first three nonzero terms of the McLaurin series for ( \cos(x) ).

Then we can say ( x \cos(x) ), so ( x \cdot \cos(x) ). I'm just going to multiply each of these things by ( x ). So I'm multiplying one side, the thing, but I'm multiplying both sides by ( x ). So I'm getting ( x - \frac{1}{2!} x^3 + \frac{1}{4!} x^5 ) and we're done.

Even though this might have seemed a little hairy and a bit of a long process, and some people have it somewhat committed to memory, what the McLaurin series expansion of ( \cos(x) ) and ( \sin(x) ) are, and sometimes ( e^x ) as well. Then this could be a very fast process where you just multiply that by ( x ).

But as you can see, even finding that McLaurin series expansion for ( \cos(x) ) isn't too bad. If you had done it the other way, if you just tried to take the first, second, third, fourth, fifth, or all the way to the fourth derivative of this and evaluate at zero, it would have gotten very, very, very hairy.

More Articles

View All
Fix Your Financial Thermostat If You Want to Be Rich
Did you know that there’s a little toggle inside of you that determines how much money you’ll earn? Its job is to regulate how comfortable you are with your current financial situation, and it directly impacts if you work harder or if you’re slacking off.…
Rockets 101 | National Geographic
[Narrator] The ground begins to tremble. [Announcer] Three. [Narrator] Massive engines roar to life. [Announcer] Two. [Narrator] Billowing clouds of exhaust. [Announcer] One. [Narrator] And then a blinding pillar of fire. [Announcer] Liftoff…
Creativity break: what are some new ways of thinking about problem solving? | Khan Academy
[Music] We have the opportunity to work together with a variety of different voices, colleagues from all over the world who have different strengths that they bring, different perspectives that they bring about life and about how the world operates. Only …
Multivariable chain rule
So I’ve written here three different functions. The first one is a multivariable function; it has a two variable input, (XY), and a single variable output, that’s (x^2 \cdot y). That’s just a number. And then the other two functions are each just regular …
Kamala’s $25K Homebuyers Tax Credit Will Backfire
Kevin, look, I feel deeply for Jenzy. I can’t imagine being a first-time home buyer and you’re staring down, you know, million-dollar homes with huge interest rates. I mean, is that the plan that will work? I got two Gen Z in my family right now, and the…
Why You Must Be Ruthless in Business or Fail | Kevin O'Leary
[Music] Yeah, well, you’re preaching to the choir here, and I completely agree. That’s why I jumped ship from my, you know, job at the studio table your door, because you were personally motivated to stop living that way. Yeah, but can you talk about the…