yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trick involving Maclaurin expansion of cosx


3m read
·Nov 11, 2024

The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ).

So one thing that you're immediately going to find, let's just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynomial. We're going to evaluate ( f ) at zero. That's why it's a McLaurin series; it's going to be centered at zero. It's a Taylor series centered at zero plus ( f'(0) \cdot x ) plus ( \frac{f''(0) \cdot x^2}{2} + \frac{f'''(0) \cdot x^3}{3!} ) and we keep going on and on and on forever.

What you're immediately going to find is when you start taking the derivatives of ( f ) and then the second, third, fourth, and fifth derivatives, you're actually going to have to take a bunch of derivatives here. Every time you're going to have to apply the product rule. This is going to get very hairy very, very fast.

So there's actually a trick to this problem. What we want to do, we could find the McLaurin series. We can find the first three nonzero terms of the McLaurin series for ( \cos(x) ) and then just multiply that by ( x ). Because, you know, if we just have ( x \cos(x) ), you could use the same thing as ( x \times ).

Or another way of saying it is the first three terms of the McLaurin expansion for this is just going to be ( x ) times the first three terms of the McLaurin expansion for ( \cos(x) ). So let's do that. To do that, let's think about the various derivatives of ( \cos(x) ).

So if ( f(x) ), let me use a different letter here for the function, if ( g(x) = \sin(x) ), then ( g(0) = 1 ). The first derivative would be equal to ( \sin(x) ), so the first derivative evaluated at zero is zero. The sine of anything or, negative sine of zero, I should say, is going to be zero.

Then the second derivative, well, the derivative of sine is cosine, so it's negative sine. The second derivative evaluated at zero is going to be equal to -1. You might start seeing a pattern here. The third derivative of ( \sin(x) ) is equal to ( \cos(x) ). If I evaluate the third derivative at zero, I'm going to get zero again.

When I take the derivative of this, when I take the fourth derivative, I get back to cosine. The fourth derivative is the same thing as the function, so the fourth derivative evaluated at zero, this is also going to be zero. The fifth derivative evaluated at zero, this cycles. This is going to be the sixth derivative evaluated at zero, this is going to be the seventh derivative evaluated at zero.

So what are the first three nonzero terms? Let's see, it's going to be this one, it's going to be this one, and it is going to be this one. We have, or let me just do it for ( \cos(x) ), so let me write this down. You might already know the first three nonzero terms of the McLaurin series for ( \cos(x) ), but I'm finding it here for us.

So ( \cos(x) ) is approximately equal to... The first term here is just ( \cos(0) ), so that's just 1. Then the next one is going to be our second derivative, so it's ( -\frac{1}{2!} x^2 ). This is the one that involves the second derivative, ( x^2 ). Then we're going to involve the fourth derivative and the coefficient ( 1 ). So it's going to be ( +\frac{1}{4!} x^4 ).

If it involves the fourth derivative, well, it's going to be divided by four factorial. So it's going to be times ( x^4 ). And there you have it. These are the first three nonzero terms of the McLaurin series for ( \cos(x) ).

Then we can say ( x \cos(x) ), so ( x \cdot \cos(x) ). I'm just going to multiply each of these things by ( x ). So I'm multiplying one side, the thing, but I'm multiplying both sides by ( x ). So I'm getting ( x - \frac{1}{2!} x^3 + \frac{1}{4!} x^5 ) and we're done.

Even though this might have seemed a little hairy and a bit of a long process, and some people have it somewhat committed to memory, what the McLaurin series expansion of ( \cos(x) ) and ( \sin(x) ) are, and sometimes ( e^x ) as well. Then this could be a very fast process where you just multiply that by ( x ).

But as you can see, even finding that McLaurin series expansion for ( \cos(x) ) isn't too bad. If you had done it the other way, if you just tried to take the first, second, third, fourth, fifth, or all the way to the fourth derivative of this and evaluate at zero, it would have gotten very, very, very hairy.

More Articles

View All
Wild Life | Official Trailer | National Geographic
In the very beginning, Doug and I were living in the middle of this paradise, and we said it would be incredible to save this place, just save it. Doug and Chris, you would see them together, and it was like teenage kids; he was very charming. I thought, …
How We Can Keep Plastics Out of Our Ocean | National Geographic
8 million metric tons of plastic trash enters the sea from land every year; the equivalent of five plastic bags filled with trash for every foot of coastline in the world. Across our ocean, plastic trash blows into circulation, dispersed almost everywhere…
10 Effective Shortcuts In Life
You’ve heard it before, right? There are no shortcuts to success in life. So why then do some people achieve it so much faster than others? Well, the reality is life is full of shortcuts. And here is a list of our favorites. Welcome to ALUX first step. P…
Motion along a curve: finding rate of change | Advanced derivatives | AP Calculus BC | Khan Academy
We’re told that a particle moves along the curve (x^2 y^2 = 16), so that the x-coordinate is changing at a constant rate of -2 units per minute. What is the rate of change, in units per minute, of the particle’s y-coordinate when the particle is at the po…
Be Like Sal: 3 Ways a Tablet Can Energize Your Digital Teaching!
Thank you so much for joining today or this evening, depending on where you’re calling from. This is Jeremy Schieffen at Khan Academy, and I’m so excited they’re joining with us because if anything at Khan Academy, 2020 has been the year of the tablet. We…
Canada Gets Rid of the Penny (Huzzah!)
Hello Internet, I want to talk about Canada, who this week made my reason-to-like her list one item longer by deciding to abolish the penny. Since I previously made a video called ‘Death to Pennies,’ it should come as no surprise that this move gets a bi…