yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting polynomials of degree one | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

Let's say that a is equal to 6 m - 4 N minus 7 p, and let's also say that b is equal to 7 m - 3 n + 5 P. What I want to do in this video is figure out what is a + b equal to, and I want to express that in terms of M's, n's, and P's. I want to use as few terms as possible. So why don't you pause this video and see if you can work through that on your own before we work through it together?

All right, now let's work through this together. So first, we have a, and I'm just going to rewrite it over here. So we have 6 M minus 4 N minus 7 p.

Then to that, we are going to add B right over here, which is 7 m - 3 n + 5 P. So what we can do is add the terms that are using the same variables. For example, I could add the 6 M to this 7 m. If I have six M's and then I add another 7 m, well, I'm going to have 13 M's here. So that's 13 m.

Next, I could think about adding you might want to say 4 N and 3 n. But since we're subtracting 4 N, we're subtracting 3 n here. You could view it as -4 n + -3 n, or you could say we're starting at -4 n and then we're subtracting three more n's. Well, -4 minus 3 is -7, so you're now going to have -7 n's. Or you could say we're subtracting 7 n.

Last but not least, we could say -7 p, and then we are going to add 5 P to that. So if you start at -7 p and then add 5 p, you're going to get to negative 2 p. Another way you could think about it is you have 5 p and we're subtracting 7 P from that, so you're now going to have negative -2 p.

And we're done! You can't combine any of these because this is in terms of M, this is in terms of N, and this is in terms of P.

Let's do another example here. In this one, let's do some subtraction. Let's imagine that we have the expression or we do have the expression 4x - z vs. 8 x - 4 y + 3 Z. See if you can do this subtraction. We're subtracting this expression from this expression over here. Pause this video and see if you can do that.

All right, now let's work through this together. So the way that I like to do this is essentially distribute this negative sign. You could view this as negative 1 times all of this, and now to remove the parentheses, I can just multiply -1 times each of those terms.

So let's do that. So this first part over here is just 4x - z, and now let's add, so plus, and I'm going to distribute this negative 1 onto each of these terms. So we have -1 * 8X, all right, -8X. Then we have -1 * -4 y; well, that's going to be positive 4 Y. Lastly, we have -1 * 3 Z; that would be -3 Z.

Now we can add terms that are dealing with the same variable. We can look at this 4X, and then we have -8x. So what's 4X plus -8X? Well, that's going to be -4X. Then we could go to, actually, let me go to Y next. Just my brain wants to go from X to Y to Z. I could have done Z first, but there's no y over here, and we just have a 4 Y over here. So I'll just rewrite that as + 4 Y.

Last but not least, we have a negative Z here, or we're subtracting Z, and now we're subtracting three more Z's right over here. So in total, we're subtracting a z and then subtracting three more Z's. We're going to subtract four Z's, so minus 4 Z.

And we are done!

More Articles

View All
Dangerous Economic Policies: This Will Destroy the American Dream!
Don’t mess with the American Dream. There’s a reason people go through barbwire to try and get in here. We don’t want to set a policy up where they’re trying to get out of America. Let’s go ahead and bring in Kevin O. He’s the chairman of O Ventures and …
TIL: These Spiny Sea Creatures Can Regrow Lost Body Parts | Today I Learned
There’s an incredible group of animals out there called the echinoderms. They can actually regenerate a lost body part. So, a kind of derm essentially just means spiny skin, so derm like dermis, so skin, and a chi know is sort of spiny. So, sort of spiny …
Andrew Mason at Startup School SV 2014
That was a really good intro for making it up just then, and it definitely sounded like that, like it was bad in the way jazz is bad. Well, you’re dodging the question of that wonderful music we were just listening to from your album, “Hardly Working.” P…
She Sails the Seas Without Maps or Compasses | Podcast | Overheard at National Geographic
Foreign, I like to think of the voyage and canoes as taking us back in time on the ocean. The Hua Kamalu is a navigator with the Polynesian Voyaging Society. I’ll often ask my crew, like, what do you think it would have been like to show up in Hawaii as t…
Using quotation marks in titles | Punctuation | Khan Academy
Hello grammarians! Hello, Paige! Hi, David! So, today we’re going to be talking about quotation marks. What are they and what do they do? Paige Finch: We use quotation marks to indicate when someone is speaking, right? So if we’re writing dialogue, we ca…
BONUS: "FANBOYS," a mnemonic song | Conjunctions | Parts of speech| Khan Academy
Fanboy, Fanboy, the boys who carry the fan. Fanbo, Fanboy, the boys who had a plan. For the way was long and the day was hot. The boys were always prepared; neither sand nor heat would deter their feet. They did what no others had dared. Bo fanbo, th…