yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting polynomials of degree one | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

Let's say that a is equal to 6 m - 4 N minus 7 p, and let's also say that b is equal to 7 m - 3 n + 5 P. What I want to do in this video is figure out what is a + b equal to, and I want to express that in terms of M's, n's, and P's. I want to use as few terms as possible. So why don't you pause this video and see if you can work through that on your own before we work through it together?

All right, now let's work through this together. So first, we have a, and I'm just going to rewrite it over here. So we have 6 M minus 4 N minus 7 p.

Then to that, we are going to add B right over here, which is 7 m - 3 n + 5 P. So what we can do is add the terms that are using the same variables. For example, I could add the 6 M to this 7 m. If I have six M's and then I add another 7 m, well, I'm going to have 13 M's here. So that's 13 m.

Next, I could think about adding you might want to say 4 N and 3 n. But since we're subtracting 4 N, we're subtracting 3 n here. You could view it as -4 n + -3 n, or you could say we're starting at -4 n and then we're subtracting three more n's. Well, -4 minus 3 is -7, so you're now going to have -7 n's. Or you could say we're subtracting 7 n.

Last but not least, we could say -7 p, and then we are going to add 5 P to that. So if you start at -7 p and then add 5 p, you're going to get to negative 2 p. Another way you could think about it is you have 5 p and we're subtracting 7 P from that, so you're now going to have negative -2 p.

And we're done! You can't combine any of these because this is in terms of M, this is in terms of N, and this is in terms of P.

Let's do another example here. In this one, let's do some subtraction. Let's imagine that we have the expression or we do have the expression 4x - z vs. 8 x - 4 y + 3 Z. See if you can do this subtraction. We're subtracting this expression from this expression over here. Pause this video and see if you can do that.

All right, now let's work through this together. So the way that I like to do this is essentially distribute this negative sign. You could view this as negative 1 times all of this, and now to remove the parentheses, I can just multiply -1 times each of those terms.

So let's do that. So this first part over here is just 4x - z, and now let's add, so plus, and I'm going to distribute this negative 1 onto each of these terms. So we have -1 * 8X, all right, -8X. Then we have -1 * -4 y; well, that's going to be positive 4 Y. Lastly, we have -1 * 3 Z; that would be -3 Z.

Now we can add terms that are dealing with the same variable. We can look at this 4X, and then we have -8x. So what's 4X plus -8X? Well, that's going to be -4X. Then we could go to, actually, let me go to Y next. Just my brain wants to go from X to Y to Z. I could have done Z first, but there's no y over here, and we just have a 4 Y over here. So I'll just rewrite that as + 4 Y.

Last but not least, we have a negative Z here, or we're subtracting Z, and now we're subtracting three more Z's right over here. So in total, we're subtracting a z and then subtracting three more Z's. We're going to subtract four Z's, so minus 4 Z.

And we are done!

More Articles

View All
Example: Analyzing distribution of sum of two normally distributed random variables | Khan Academy
Shinji commutes to work, and he worries about running out of fuel. The amount of fuel he uses follows a normal distribution for each part of his commute, but the amount of fuel he uses on the way home varies more. The amounts of fuel he uses for each part…
15 Biggest Opportunities You'll Have in Your Life
Life is full of opportunities that can shape your journey and define your future. From the early days of education to building a family, each opportunity gives you a chance for growth, fulfillment, and success. Here are the 15 biggest opportunities you’ll…
WE JUST HIT 100K SUBSCRIBERS! Free Lifetime Mentoring Giveaway + Q&A!
[Music] Area [Music] You’re getting my real reaction here. Like, this is… we hit 10,000, you guys! Oh, that’s crazy! I am blown away, you guys. Like, I was just in traffic right now, as you could see, I’m just in traffic, and I refreshed the YouTube thing…
Newton's first law | Physics | Khan Academy
You’re standing in a bus at rest, without any support. Suddenly, the bus starts moving, and you fall back, as if someone pushed you back. Why does this happen? You get back on your feet, and now suddenly the bus stops, and you fall forward, as if someone …
Warren Buffett & Charlie Munger: Margin of Safety
Mr. Buffett and Mr. Munger, I’m Mark Rybnikov from Melbourne, Australia. I just wanted to ask you, how do you judge the right margin of safety to use when investing in various common stocks? For example, in a dominant, long-standing, stable business, wou…
National Parks: Inside a Movement to Attract More Visitors of Color | National Geographic
[Music] There was a time when I would see African-Americans at such an infrequent rate that when I saw them, it was just that silence, and that was once every month or so when I first came here. But now my expectation is that every day I’m here in at my j…