yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting polynomials of degree one | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

Let's say that a is equal to 6 m - 4 N minus 7 p, and let's also say that b is equal to 7 m - 3 n + 5 P. What I want to do in this video is figure out what is a + b equal to, and I want to express that in terms of M's, n's, and P's. I want to use as few terms as possible. So why don't you pause this video and see if you can work through that on your own before we work through it together?

All right, now let's work through this together. So first, we have a, and I'm just going to rewrite it over here. So we have 6 M minus 4 N minus 7 p.

Then to that, we are going to add B right over here, which is 7 m - 3 n + 5 P. So what we can do is add the terms that are using the same variables. For example, I could add the 6 M to this 7 m. If I have six M's and then I add another 7 m, well, I'm going to have 13 M's here. So that's 13 m.

Next, I could think about adding you might want to say 4 N and 3 n. But since we're subtracting 4 N, we're subtracting 3 n here. You could view it as -4 n + -3 n, or you could say we're starting at -4 n and then we're subtracting three more n's. Well, -4 minus 3 is -7, so you're now going to have -7 n's. Or you could say we're subtracting 7 n.

Last but not least, we could say -7 p, and then we are going to add 5 P to that. So if you start at -7 p and then add 5 p, you're going to get to negative 2 p. Another way you could think about it is you have 5 p and we're subtracting 7 P from that, so you're now going to have negative -2 p.

And we're done! You can't combine any of these because this is in terms of M, this is in terms of N, and this is in terms of P.

Let's do another example here. In this one, let's do some subtraction. Let's imagine that we have the expression or we do have the expression 4x - z vs. 8 x - 4 y + 3 Z. See if you can do this subtraction. We're subtracting this expression from this expression over here. Pause this video and see if you can do that.

All right, now let's work through this together. So the way that I like to do this is essentially distribute this negative sign. You could view this as negative 1 times all of this, and now to remove the parentheses, I can just multiply -1 times each of those terms.

So let's do that. So this first part over here is just 4x - z, and now let's add, so plus, and I'm going to distribute this negative 1 onto each of these terms. So we have -1 * 8X, all right, -8X. Then we have -1 * -4 y; well, that's going to be positive 4 Y. Lastly, we have -1 * 3 Z; that would be -3 Z.

Now we can add terms that are dealing with the same variable. We can look at this 4X, and then we have -8x. So what's 4X plus -8X? Well, that's going to be -4X. Then we could go to, actually, let me go to Y next. Just my brain wants to go from X to Y to Z. I could have done Z first, but there's no y over here, and we just have a 4 Y over here. So I'll just rewrite that as + 4 Y.

Last but not least, we have a negative Z here, or we're subtracting Z, and now we're subtracting three more Z's right over here. So in total, we're subtracting a z and then subtracting three more Z's. We're going to subtract four Z's, so minus 4 Z.

And we are done!

More Articles

View All
Adding four two digit numbers
What I want to do in this video is try to figure out what 35 plus 22 plus 10 plus 16 is equal to. So, pause this video and see if you can figure that out. All right, now let’s work through this together. Now, as you will learn, there’s many ways to appro…
How Pitching Investors is Different Than Pitching Customers - Michael Seibel
Although I’m Michael Seibel and partner Y Combinator, today I’d like to talk about the difference between your investor pitch and your customer pitch. When most founders typically screw up here is that your customer typically knows a lot about the proble…
Blockchain 101 - Part 2 - Public / Private Keys and Signing
Welcome back. Last time we looked at a blockchain and how it works, particularly in the financial context. We have these transactions that we were creating that move money from one person to another. But there’s a big problem with this, and that is what’s…
Ethereum Was Stolen - My Response
What’s up, Grandma’s guys! Here, so it’s official: Bitcoin and the entire cryptocurrency market just lost the battle to Congress, who recently passed a bill containing a slew of regulations that would be impossible to comply with, thereby stalling the ent…
Charlie Munger: The 5 Investing Tricks That Made Him a Billionaire
But what caused the financial success was not extreme ability. You know, I have a good mind, but I’m way short of prodigy. And I’ve had results in life that are prodigious, and that came from tricks I just learned a few basic tricks from people like my gr…
Using Fire to Make Tools | The Great Human Race
On this journey, we need to carry grains, milk, water, processing number materials directly on a fire. So, I want to make some clay pots. Prior to the invention of pottery, our ancestors used organic containers such as animal stomachs and baskets to store…