yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of rational function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we want to evaluate the definite integral from -1 to 2 from 1 to -2 of 16 - x³ over x³ dx.

Now, at first, this might seem daunting. I have this rational expression; I have x's in the numerator and x's in the denominator, but we just have to remember we just have to do some algebraic manipulation, and this is going to seem a lot more tractable.

This is the same thing as a definite integral from -1 to -2 of 16 over x³ - x³ over x³ - x³ over x³ dx.

And now, what is that going to be equal to? That is going to be equal to the definite integral from -1 to -2 of... I could write this first term right over here. Let me do this in a different color. I could write this as 16x^(-3) - x³ over x³ well, x³ is just over x³ over x³.

Well, x³ over x³ is just going to be equal to 1, so this is going to be minus 1 dx.

So what is this going to be equal to? Well, let's take the anti-derivative of each of these parts, and then we're going to have to evaluate them at the different bounds.

So let's see, the anti-derivative of 16x^(-3), we're just going to do the power rule for derivatives in reverse. You could view this as the power rule of integration or the power rule of taking the anti-derivative, where what you do is you're going to increase our exponent by one. So you go from -3 to -2, and then you're going to divide by that amount by -2.

So it's going to be 16 / -2 * x^(-2). All I did is I increased the exponent, and I divided by that amount, so that's the anti-derivative here. And 16 / -2 that is just 8, so we have 8x^(-2).

And then the anti-derivative of -1, well, that's just -x. Negative negative x gives you +x. Actually, you might just know that!

And hey, if I take the derivative of x, I get 1. Or if you viewed this as x^0 because that's what one is... well, it's the same thing; you increase the exponent by one to get x to the first power and then divide by one.

So, I mean, you could view it as that right over there, but either way, you get to negative or minus x.

And so now we want to evaluate that. We're going to evaluate that at the bounds and take the difference.

So we're going to evaluate that at -2 and then subtract from that this evaluated at -1. And let me do those in two different colors just so we can see what's going on.

So we're going to evaluate it at -2, and we're going to evaluate it at -1.

So let's first evaluate it at -2. This is going to be equal to... when you evaluate it at -2, it's going to be -8 * (-2)^(-2) - (-2).

And from that, we're going to subtract what we evaluated at -1. So it's going to be 8 * (-1)^(-2) - (-1).

Alright, so what is this going to be? So -2 to the -2... so -2 to the -2 is equal to 1 over (-2)², which is equal to 1/4.

So this is equal to positive 1/4, but then -8 * positive 1/4 is going to be equal to -2.

And then we have -2 - (-2), so that's -2 + 2, and so everything I've just done in this purplish color that is just going to be zero.

And then if we look at what's going on in the orange when we evaluate at -1, let's see, -1 to the -2 power... well, that's 1 over (-1)².

Well, this is all just going to be 1, and so we're going to have -8 + 1, which is equal to -7.

So all of this evaluates to -7, but remember we're subtracting -7. So this is going to result... we deserve a little bit of a drum roll.

This is going to be equal to positive 7. And obviously, we don't have to write that positive out front. I just wrote that just to emphasize that this is going to be a positive 7.

More Articles

View All
The truth behind jet lag...
The thing that everybody thinks is jet lag. People think it’s because of the time zone change; it really is not the time zone change. It’s the cabin altitude of the plane. If you ever go skiing and you go to a place that’s at 2500 or 3,000 M, and the fir…
How to be more disciplined (animated short story)
Oh, meet Lucas. He’s a young man about to enter college. He’s had a difficult life growing up with his only parent, his mother, and his younger sister. Due to his difficulties in facing his adversities, he’s lived a fairly unhealthy life and constantly in…
FIRST Photo on the INTERNET ... and other things too.
Hey, Vsauce. Michael here. And this week I am in San Francisco. I just flew in a couple of days ago, so I’ve been busy traveling, but new episodes of regular shows like IMG! and DONG are coming soon. But in the meantime, rather than post nothing, I figur…
The Science of Thinking
For most of us, thinking is at least somewhat unpleasant. We try to avoid it, where possible. For example: I asked these guys how long does it take for the earth to go around the Sun. What do you reckon, cuz? Isn’t it 24 hours? Obviously a day, yes. O…
Go with what you can get started on most quickly. And get that first user.
Here’s a question: I have lots of startup ideas. How do I choose the one to work on? Uh, common problem. There’s too many choices; there’s lots of choices in the world. You don’t know what to focus on. You know, there’s different algorithms you can use.…
Stoic Lessons People Learn Too Late in Life | You'll Not Regret Watching This Video
Have you ever wondered what lessons many people learn too late in life? Get ready, because in this video I’m going to reveal those lessons from stoicism, offering you powerful tools to face challenges and grow as an individual. Now, if you are new here, p…