yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of rational function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we want to evaluate the definite integral from -1 to 2 from 1 to -2 of 16 - x³ over x³ dx.

Now, at first, this might seem daunting. I have this rational expression; I have x's in the numerator and x's in the denominator, but we just have to remember we just have to do some algebraic manipulation, and this is going to seem a lot more tractable.

This is the same thing as a definite integral from -1 to -2 of 16 over x³ - x³ over x³ - x³ over x³ dx.

And now, what is that going to be equal to? That is going to be equal to the definite integral from -1 to -2 of... I could write this first term right over here. Let me do this in a different color. I could write this as 16x^(-3) - x³ over x³ well, x³ is just over x³ over x³.

Well, x³ over x³ is just going to be equal to 1, so this is going to be minus 1 dx.

So what is this going to be equal to? Well, let's take the anti-derivative of each of these parts, and then we're going to have to evaluate them at the different bounds.

So let's see, the anti-derivative of 16x^(-3), we're just going to do the power rule for derivatives in reverse. You could view this as the power rule of integration or the power rule of taking the anti-derivative, where what you do is you're going to increase our exponent by one. So you go from -3 to -2, and then you're going to divide by that amount by -2.

So it's going to be 16 / -2 * x^(-2). All I did is I increased the exponent, and I divided by that amount, so that's the anti-derivative here. And 16 / -2 that is just 8, so we have 8x^(-2).

And then the anti-derivative of -1, well, that's just -x. Negative negative x gives you +x. Actually, you might just know that!

And hey, if I take the derivative of x, I get 1. Or if you viewed this as x^0 because that's what one is... well, it's the same thing; you increase the exponent by one to get x to the first power and then divide by one.

So, I mean, you could view it as that right over there, but either way, you get to negative or minus x.

And so now we want to evaluate that. We're going to evaluate that at the bounds and take the difference.

So we're going to evaluate that at -2 and then subtract from that this evaluated at -1. And let me do those in two different colors just so we can see what's going on.

So we're going to evaluate it at -2, and we're going to evaluate it at -1.

So let's first evaluate it at -2. This is going to be equal to... when you evaluate it at -2, it's going to be -8 * (-2)^(-2) - (-2).

And from that, we're going to subtract what we evaluated at -1. So it's going to be 8 * (-1)^(-2) - (-1).

Alright, so what is this going to be? So -2 to the -2... so -2 to the -2 is equal to 1 over (-2)², which is equal to 1/4.

So this is equal to positive 1/4, but then -8 * positive 1/4 is going to be equal to -2.

And then we have -2 - (-2), so that's -2 + 2, and so everything I've just done in this purplish color that is just going to be zero.

And then if we look at what's going on in the orange when we evaluate at -1, let's see, -1 to the -2 power... well, that's 1 over (-1)².

Well, this is all just going to be 1, and so we're going to have -8 + 1, which is equal to -7.

So all of this evaluates to -7, but remember we're subtracting -7. So this is going to result... we deserve a little bit of a drum roll.

This is going to be equal to positive 7. And obviously, we don't have to write that positive out front. I just wrote that just to emphasize that this is going to be a positive 7.

More Articles

View All
Comparing fractions with the same denominator | Math | 3rd grade | Khan Academy
Let’s compare ( \frac{2}{4} ) and ( \frac{3}{4} ). First, let’s think about what these fractions mean. ( \frac{2}{4} ) means we have some whole and we’ve split it into four equal size pieces, and we get two of those pieces. Maybe we could think about pizz…
What Game Theory Reveals About Life, The Universe, and Everything
This is a video about the most famous problem in game theory. Problems of this sort pop up everywhere, from nations locked in conflict to roommates doing the dishes. Even game shows have been based around this concept. Figuring out the best strategy can m…
Ask me anything with Sal Khan: April 16 | Homeroom with Sal
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily homeroom livestream. The whole goal of this is for all of us to stay connected during times of school closures. Depending on the day, this is a time for all of y’all to ask questions of my…
Run-ons and comma splices | Syntax | Khan Academy
Hello Grim, Marians. Hello Rosie. Hi David, how are you? Good, how are you? Good. Today we are going to talk about run-ons and comma splices. A run-on sentence is what happens when two independent clauses are put together in one sentence without any punc…
How We Can Keep Plastics Out of Our Ocean | National Geographic
8 million metric tons of plastic trash enters the sea from land every year; the equivalent of five plastic bags filled with trash for every foot of coastline in the world. Across our ocean, plastic trash blows into circulation, dispersed almost everywhere…
Relative maxima and minima worked example
This is the Khan Academy exercise on relative maxima and minima, and they ask us to mark all the relative maximum points in the graph. Like always, pause this video and see if you can figure out which are the relative maximum points. Okay, now let’s work…