yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example of derivative as limit of average rate of change


3m read
·Nov 11, 2024

Stacy wants to find the derivative of f of x = x² + 1 at the point x = 2. Her table below shows the average rate of change of f over the intervals from x to 2 or from 2 to x, and these are closed intervals for x values. They get increasingly closer to two, so we're talking about the average rate of change of f over these closed intervals for x values that get increasingly close to two.

It looks like we're going to be dealing with some type of a limit, or we're trying to calculate some type of a limit or approximate some type of a limit. So let's read this data here. So these are the x values, and she's trying to find the average rate of change between each of these x values and 2, or the average rate of change of the function when x is one of these x values and 2.

Then she has the average rate of change that she pre-calculated, so we don't have to get a calculator out or anything like that. And just as a reminder, how did she calculate this 3.9? Well, they tell us she took f of 1.9. What is the function equal when x is 1.9? From that, she subtracted what is the value of the function when f is equal to 2. So that's really our change in f, and she divided it by the x, which is 1.9 minus 2.

So change in f over change in x, what is the average rate of change of our function over that interval? So she did it between 1.9 and 2, she got 3.9. Then she gets closer to two, so now she's doing it between 1.99 and 2, and it becomes 3.99. It looks like it's getting closer to four.

She gets even closer to two and the average rate of change gets even closer to four. Then she goes on the other side of two. You could view it as this is approaching. This is approaching x approaching two from the left-hand side, and this is x approaching two from the right-hand side. So when it's 2.1, the average rate of change is 4.1. When it's 2.01, once again we're getting closer to two; we're getting closer to two, the average rate of change is getting closer to four.

The closer we get to two, the closer the average rate of change gets to four. So what this data is really helping us approximate, it's really saying, "Okay, the average rate of change we know is f of x minus f of 2 over x - 2," but what we're really thinking about is, "Well, what is the limit as x approaches two?" Right over here, that's what this data is helping us to get at, and it looks like this limit is equal to four.

They give us the data here and says, “Look, the closer that x gets to two from either the left-hand side or the right-hand side, the closer that this expression right over here, which is this number, gets to four." You might recognize this as one of the definitions of a derivative. This is one of the definitions of a derivative. This right over here would be f prime of 2.

The derivative at x = 2 is equal to the limit as x approaches 2 of all of this business. There's other ways to express a derivative as a limit, but this is one of them. And so there you go from the table, what does the derivative of f of x equals x² + 1 at x = 2 appear to be? Well, the derivative at x = 2 appears to be equal to 4, and we're done.

More Articles

View All
The 2023 Recession Just Started | DO THIS NOW
What’s up guys, it’s Graham here. So, as it turns out, we might very well be seeing the beginnings of a 2023 bear market. In fact, the slowing inflation was just reported: more than a third of small businesses couldn’t afford to pay all of the rent in Oc…
What is Khanmigo moderation? | Introducing Khanmigo | Khanmigo for students | Khan Academy
In this video, we’re going to see how Kigo can sometimes moderate the conversation in an attempt to protect you, the user. Sometimes it gets it right, but sometimes it gets it wrong. What do we do in those situations? So, let’s say we want to write a fan…
Geoff Ralston's Intro - Startup Investor School Day 1
Welcome everyone to my competitors’ startup investor school. If you think you’re at a different class, you should leave now. So it’s great to see you all here. I’m Jeff Ralston, and I’m going to act kind of as the master of ceremonies. I’ll be introducin…
Continuity at a point | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is come up with a more rigorous definition for continuity and the general idea of continuity. We’ve got an intuitive idea of the past; that a function is continuous at a point is if you can draw the graph of that funct…
Finding specific antiderivatives: rational function | AP Calculus AB | Khan Academy
So we’re told that ( F(2) ) is equal to 12. ( F’ ) prime of ( x ) is equal to ( \frac{24}{x^3} ), and what we want to figure out is what ( F(-1) ) is. Alright, so they give us the derivative in terms of ( x ), so maybe we can take the antiderivative of t…
Theories Are Explanations, Not Predictions
There’s another example from science like this. On a heat source, put a beaker of water, then put a thermometer into that water and turn on your heat source. Then record, as the time passes, what the temperature of the water is. You will notice that the t…