yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example of derivative as limit of average rate of change


3m read
·Nov 11, 2024

Stacy wants to find the derivative of f of x = x² + 1 at the point x = 2. Her table below shows the average rate of change of f over the intervals from x to 2 or from 2 to x, and these are closed intervals for x values. They get increasingly closer to two, so we're talking about the average rate of change of f over these closed intervals for x values that get increasingly close to two.

It looks like we're going to be dealing with some type of a limit, or we're trying to calculate some type of a limit or approximate some type of a limit. So let's read this data here. So these are the x values, and she's trying to find the average rate of change between each of these x values and 2, or the average rate of change of the function when x is one of these x values and 2.

Then she has the average rate of change that she pre-calculated, so we don't have to get a calculator out or anything like that. And just as a reminder, how did she calculate this 3.9? Well, they tell us she took f of 1.9. What is the function equal when x is 1.9? From that, she subtracted what is the value of the function when f is equal to 2. So that's really our change in f, and she divided it by the x, which is 1.9 minus 2.

So change in f over change in x, what is the average rate of change of our function over that interval? So she did it between 1.9 and 2, she got 3.9. Then she gets closer to two, so now she's doing it between 1.99 and 2, and it becomes 3.99. It looks like it's getting closer to four.

She gets even closer to two and the average rate of change gets even closer to four. Then she goes on the other side of two. You could view it as this is approaching. This is approaching x approaching two from the left-hand side, and this is x approaching two from the right-hand side. So when it's 2.1, the average rate of change is 4.1. When it's 2.01, once again we're getting closer to two; we're getting closer to two, the average rate of change is getting closer to four.

The closer we get to two, the closer the average rate of change gets to four. So what this data is really helping us approximate, it's really saying, "Okay, the average rate of change we know is f of x minus f of 2 over x - 2," but what we're really thinking about is, "Well, what is the limit as x approaches two?" Right over here, that's what this data is helping us to get at, and it looks like this limit is equal to four.

They give us the data here and says, “Look, the closer that x gets to two from either the left-hand side or the right-hand side, the closer that this expression right over here, which is this number, gets to four." You might recognize this as one of the definitions of a derivative. This is one of the definitions of a derivative. This right over here would be f prime of 2.

The derivative at x = 2 is equal to the limit as x approaches 2 of all of this business. There's other ways to express a derivative as a limit, but this is one of them. And so there you go from the table, what does the derivative of f of x equals x² + 1 at x = 2 appear to be? Well, the derivative at x = 2 appears to be equal to 4, and we're done.

More Articles

View All
'This Is Karma, Ladies And Gentlemen!': Dana White Speaks During Trump Victory Celebration
We also have a Manda White who has done some job. He’s that tough guy. So Dana started UFC and, uh, came to me. Do you mind if I use your? Nobody wanted to give him a ring because they said it’s a rough sport—a little rough. I helped him out a little bit,…
Khan Academy Student Demo
Hi everyone, this is Jeremy Shiffling from Khan Academy. Thanks so much for taking time to join me in this big week, either before the start of school or in the middle of the start of school, depending on where you’re calling from. But wherever you are in…
Updates for Startup School 2019 and Office Hours with Kevin Hale
Kevin Hale: Welcome to the podcast! Craig: Hi! Kevin Hale: You are running Startup School this year, me and Adora are hosting and the main instructors for Startup School. So many people know about Startup School; we’ve talked about it on the podcast bef…
15 Habits That Make You SMARTER Every Day
What do you think smart people have in common? A lot of people think of intelligence as something you’re simply born with; some people, after all, make being smart look effortless. Intelligence, though, isn’t a set trait. It’s a changeable, flexible abili…
The age of empire | Rise to world power (1890-1945) | US History | Khan Academy
So I have a map here of United States possessions in the Pacific and in the Caribbean today, and they’re kind of all over the place. I mean, some of them are pretty tiny. There’s Guam, which is just barely a little speck on the map, and American Samoa. An…
Collecting Ice for Cocktails | Restaurants at the End of the World | National Geographic
Oh my God! So what are we getting? We’re getting ice. We’re getting…the most obvious choice. Kill the engine, brother. If you’re really quiet, and you listen through the waves, you hear all the pops and cracks? Mm hmm. This is the glacier ice expansion, …