yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fundamental theorem to evaluate derivative


2m read
·Nov 10, 2024

Let's say that I were to walk up to you on the street and said, "All right, I have this function g of x which I'm going to define as the definite integral from 19 to x of the cube root of t dt."

And then I were to ask you, "What is the derivative of g evaluated at 27?"

Pause this video and think about how you would approach that.

Well, the most obvious thing would be, "All right, g prime of x." And I'll switch colors here just for a little bit of contrast.

g prime of x is going to be the derivative with respect to x of all of this business, of all of—I’ll put it in brackets here—the integral from 19 to x of the cube root of t dt.

And you might be tempted to take the anti-derivative here and evaluate it at x, evaluate it at 19, find the difference, and then take the derivative.

And you could do that and then evaluate that at 27. But we're going to see a shortcut.

You could just use the fundamental theorem of calculus.

If you're taking the derivative with respect to x of a function that's defined by a definite integral, right, like this, where our upper boundary is x, this is just going to be equal to our inner function right over here, with instead of t being the variable, it would now be x.

So this is just going to be equal to the cube root of x, and that saved us some time there.

But it can be really useful if this function inside the integral is really hard to take the anti-derivative of.

It's really hard to evaluate this integral. The fundamental theorem of calculus can be very useful.

And so going back to our original question, g prime of 27, well, this is just going to be equal to the cube root of 27, which of course is equal to 3.

And we're done.

More Articles

View All
Income Inequality Is Driving Political Turmoil, and It Always Has, says Sean Wilentz | Big Think
I think a lot of people think the party is no longer serving their interests or their desires. It happens. It’s happened before in American history plenty of times. Parties are always coalitions anyway, so there’s always somebody who’s feeling as if they…
The Living River | Plastic on the Ganges
[Music] [Music] It is the mother. When we go in, we offer our prayers and respect. [Music] Our lifestyle is on the Ganges. Our food comes from it. We bathe in it, and we drink the water from the river. [Music] During the day, I do the work of a fisherman.…
Amy Buechler and Michael Seibel on Founder Coaching and Having Hard Conversations
Alright guys, welcome to the podcast. Thanks Frank, how’s it going? Great! Good! Amy, you are a founder coach. I think a lot of people don’t know what coaching actually is, so maybe you could explain it? Yeah, that’s actually a great question because wha…
Should You Buy Index Funds Now, in an Overvalued Market?
So it’s no secret that on the back of the Magnificent 7, all this hype around AI, the stock market has gotten pretty darn expensive. Now, of course, we can argue that point depending on whether you’re a growth investor or a value investor, but just objec…
How to learn? From mistakes - Diana Laufenberg
I have been teaching for a long time, and in doing so, have acquired a body of knowledge about kids and learning that I really wish more people would understand about the potential of students. In 1931, my grandmother graduated from the eighth grade. She …
3D Audio Machu Picchu Hike (Wear Headphones) - Smarter Every Day 68A
Hey, it’s me Destin. Welcome back to Smarter Every Day. This is Gordon. He’s been doing the sound for Smarter Every Day for years. This is the first time we’ve met, but it’s in Peru. Pretty crazy—it’s awesome. He’s from Canada. So what are we doing here?…