yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying transformation described with other algebra and geometry concepts


4m read
·Nov 11, 2024

We're told that a certain mapping in the x-y plane has the following two properties: each point on the line ( y = 3x - 2 ) maps to itself. Any point ( P ) not on the line maps to a new point ( P' ) in such a way that the perpendicular bisector of the segment ( PP' ) is the line ( y = 3x - 2 ).

Which of the following statements is true? So is this describing a reflection, a rotation, or a translation?

So pause this video and see if you can work through it on your own.

All right, so let me just try to visualize this. So I'll just do a very quick sketch. If that's my y-axis, and this right over here is my x-axis, ( 3x - 2 ) might look something like this. The line ( 3x - 2 ) would look something like that. What we're saying is what they're telling us is any point on this, after the transformation, maps to itself. Now that by itself is a pretty good clue that we're likely dealing with a reflection because remember, with a reflection you reflect over a line. But if a point sits on the line, well, it's just going to continue to sit on the line.

But let's just make sure that the second point is consistent with it being a reflection. So any point ( P ) not on the line—let's see, point ( P ) right over here—it maps to a new point ( P' ) in such a way that the perpendicular bisector of ( PP' ) is the line ( y = 3x - 2 ).

So I need to connect this. The line ( 3x - 2 ) would be the perpendicular bisector of the segment between ( P ) and, well, let's see, I’d have to draw a perpendicular line. I would have to have the same length on both sides of the line ( y = 3x - 2 ). So ( P' ) would have to be right over there.

So once again, this is consistent with being a reflection. ( P' ) is equidistant on the other side of the line as ( P ). So I definitely feel good that this is going to be a reflection right over here.

Let’s do another example. So here we are told—and I'll switch my colors up—a certain mapping of the plane has the following two properties: point ( O ) maps to itself. Every point ( V ) on a circle ( C ) centered at ( O ) maps to a new point ( W ) on circle ( C ) so that the counterclockwise angle from segment ( OV ) to ( OW ) measures ( 137 ) degrees.

So is this a reflection, rotation, or translation? Pause this video and try to figure it out on your own.

All right, so let’s see, we’re talking about a circle centered at ( O ). So let’s say this is circle ( C ) centered at point ( O ). I’m going to try to draw a decent-looking circle here. You get the idea—this is not the best hand-drawn circle ever.

All right, so every point, let’s just pick a point ( V ) here. So let’s say that that is the point ( V ) on the circle centered at ( O ), and it maps to a new point ( W ) on circle ( C ) so that the counterclockwise angle from ( OV ) to ( OW ) measures ( 137 ) degrees.

Okay, so we want to know the angle— the angle from ( OV ) to ( OW ) going counterclockwise is ( 137 ) degrees. So this right over here is ( 137 ) degrees, and so this would be the segment ( OW ). ( W ) would go right over there.

What this looks like is, well, if we're talking about angles and we're rotating something, this point corresponds to this point. Essentially, the point has been rotated by ( 137 ) degrees around point ( O ). So this right over here is clearly a rotation.

This is a rotation. Sometimes reading this language at first is a little bit daunting; it was a little bit daunting to me when I first read it. But when you actually just break it down and you try to visualize what's going on, you'll say, “Okay, well look, they’re just taking point ( V ) and they’re rotating it by ( 137 ) degrees around point ( O ),” and so this would be a rotation.

Let’s do one more example. So here we are told, they’re talking about, again, a certain mapping in the x-y plane: each circle ( O ) with radius ( r ) and centered at ( (x,y) ) is mapped to a circle ( O' ) with radius ( r ) and centered at ( (x + 11, y - 7) ).

So once again, pause this video. What is this: reflection, rotation, or translation?

All right, so you might be tempted, if they’re talking about circles like we did in the last example, to think maybe they’re talking about a rotation. But look, what they’re really saying is that if I have a circle—let's say I have a circle right over here centered right over here—this is ( (x,y) ).

It’s mapped to a new circle ( O' ) with the same radius, so if this is the radius, it’s mapped to a new circle with the same radius, but now it is centered at ( (x + 11) ). So our new x-coordinate is going to be 11 larger, ( x + 11 ), and our y-coordinate is going to be 7 less.

But we have the exact same radius. So what just happened to this circle? Well, we kept the radius the same and we just shifted our center to the right by 11, plus 11, and we shifted it down by 7. So this is clearly a translation.

So we would select that right over there, and we're done.

More Articles

View All
Heritage | Vocabulary | Khan Academy
It’s time to explore our roots, wordsmiths, our backgrounds, where we came from, because the word I’m bringing you in this video is “heritage.” Mind you, we’re always exploring our roots when it comes to vocabulary, huh? All right, “heritage” is a noun. …
How 3-D-Printed Prosthetic Hands Are Changing These Kids’ Lives | Short Film Showcase
What it was like before having this hand or like having like any hand? It was pretty hard. I get bullied a lot, and like I really wanted to be part of a team. I wanted to have friends. I wanted to act like I actually had like a right hand, and it wouldn’t…
Peru Orphanage Update - Smarter Every Day 163
Hey it’s me, Destin. Welcome back to Smarter Every Day. Every December, here at Smarter Every Day, we help an orphanage in Peru, and a million people are new to Smarter Every Day this year, so you might not know about this. So if you want to learn how we …
"Where Love Is Illegal": Chronicling LGBT Stories of Love and Discrimination (Part 1) | Nat Geo Live
I’m really grateful to be here, and the reason I’m so grateful is actually, you’re really helping me out. I made a promise to the people whose photograph… photographs who you’ll see tonight. I promised them that their stories would be heard, and you’re he…
The Stock Market Is About To Drop - Again
What’s up, Graham? It’s guys serious. So, as I’m sure you’re aware, I spend way too much of my time on the internet reading through every little bit of financial news, trying to figure out what’s going on with the economy. Between that and going through t…
MATH MAGIC and a NEW LEANBACK
Hey, Vsauce. Michael here. And this video is to tell you that I released a brand new Vsauce leanback - a playlist of some of my favourite videos from all over YouTube, with me hosting in between. You can only really watch it on a computer, so if you’re on…