yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating residual example | Exploring bivariate numerical data | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

VI rents bicycles to tourists. She recorded the height in centimeters of each customer and the frame size in centimeters of the bicycle that customer rented. After plotting her results, she noticed that the relationship between the two variables was fairly linear. So she used the data to calculate the following least squares regression equation for predicting bicycle frame size from the height of the customer.

And this is the equation. So before even looking at this question, let's just think about what she did. She had a bunch of customers and she recorded, given the height of the customer, what size frame that person rented.

So she might have had something like this, where in the horizontal axis, you have height measured in centimeters, and in the vertical axis, you have frame size that's also measured in centimeters. There might have been someone who measures 100 cm in height who gets a 25 cm frame. I don't know if that's reasonable or not for you bicycle experts, but let's just go with it.

And so she would have plotted it there. Maybe there was another person of 100 cm in height who got a frame that was slightly larger, and she plotted it there. Then she did a least squares regression. A least squares regression is trying to fit a line to this data. Oftentimes you would use a spreadsheet or use a computer, and that line is trying to minimize the square of the distance between these points.

The least squares regression, maybe it would look something like this. This is just a rough estimate of it. It might look something, let me get my ruler tool, it might look something like this. So let me plot it. So that would be the line. Our regression line, Y hat, is equal to 1/3 + 13x.

You could view this as a way of predicting or either modeling the relationship or predicting that, hey, if I get a new person, I could take their height, input it as an X, and figure out what frame size they're likely to rent. But they ask us, what is the residual of a customer with a height of 155 cm who rents a bike with a 51 cm frame?

So how do we think about this? Well, the residual is going to be the difference between what they actually produced and what the line, what our regression line would have predicted. So we could say residual, let me write it this way: the residual is going to be actual minus predicted.

If predicted is larger than actual, this is actually going to be a negative number. If predicted is smaller than actual, there's going to be a positive number. Well, we know the actual; they tell us that. They tell us that the 155 cm person rents a bike with a 51 cm frame. So this is 51 cm.

But what is the predicted? Well, that's where we can use our regression equation that VI came up with. The predicted, I'll do that in orange, the predicted is going to be equal to 1/3 + 1/3 * their height. Their height is 155. That's the predicted Y hat, that's what our linear regression predicts.

So what is this going to be? This is going to be equal to 1/3 + 155 over 3, which is equal to 156 over 3, which comes out nicely to 52. So the predicted on our line is 52.

So here, this person is 155. We can plot them right over here, 155. They're coming in slightly below the line. So they're coming in slightly below the line right there, and that distance, which we can see that they are below the line, means the residual is going to be negative.

So this is going to be negative 1. If we were to zoom in right over here, you can't see it that well, but let me draw. So if we zoom in, let's say we were to zoom in on the line, and it looks like this, and our data point is right over here. We know we're below the line, and it's just going to be a negative residual.

The magnitude of that residual is how far we are below the line, and in this case, it is -1. That is our residual—this is what actual data minus what was predicted by our regression line.

More Articles

View All
Laura Overdeck on reducing math anxiety and connecting math with real life | Homeroom with Sal
We’re seeing questions come on YouTube, uh, ask Laura and I anything, and we have team members who are looking at them, and we’re going to surface, uh, them. And actually, I’ll start with a question from YouTube, and that did help. Thanks, Laura. So this…
Why It's Better to be Single | 4 Reasons
The romantic ideal of two people pair-bonding and staying together for a long time is still very much alive. However, in the current age, we can see that an increasing amount of people deliberately chooses to stay single. Especially in the West, marriage …
This Spider Wears Its Victims Like a Hat | National Geographic
This massive ant colony maintains cohesion through constant chemical communication. This signaling method facilitates the collection of food, defense of the colony, and, very creepily, collection of their dead. However, chemical signatures can be minute. …
Transforming exponential graphs | Mathematics III | High School Math | Khan Academy
We’re told the graph of y = 2^x is shown below. All right, which of the following is the graph of y = 2^(-x) - 5? So there’s two changes here: instead of 2^x, we have 2^(-x) and then we’re not leaving that alone; we then subtract five. So let’s take them…
Refraction in a glass of water | Waves | Middle school physics | Khan Academy
So, something very interesting is clearly going on when we look at this pencil dipped in this cup of water. We would expect if maybe there was no water in this glass that we would just see the pencil continue straight down in a line that looks something l…
Acid–base properties of salts | Acids and bases | AP Chemistry | Khan Academy
Salts can form acidic solutions, neutral solutions, or basic solutions when dissolved in water. For example, if we dissolve sodium chloride in water, solid sodium chloride turns into sodium cations and chloride anions in solution. At 25 degrees Celsius, t…