yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing rational expressions: unknown expression | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're told the following equation is true for all real values of Y for which the expression on the left is defined, and D is a polynomial expression. They have this equation here; what is D?

All right, so essentially what they're saying is they don't want us to somehow solve this equation. They're saying D is going to be some type of a polynomial expression. They tell us that right over there: D is a polynomial expression. If we figure out what D is, this left-hand side of the expression is going to evaluate to one for all real values of Y for which the expression is defined.

So let's think about how we would tackle that. Well, the first thing that pops into my mind, if I'm dividing by a fraction or a rational expression, that's the same thing as multiplying by the reciprocal. So let's just rewrite this on the left-hand side. This is (20y^2 - 80 / D) times... Oh, let me do the reciprocal. Let me be careful! Times the reciprocal of this. If I divide by something, it's the same thing as multiplying by the reciprocal. So let me just swap the numerator and denominator.

All right, (y^3 + 9y^2) all of that over (4y^2 - 8y). That's going to be equal to 1. Now, let's see if we can simplify all of this business on the left-hand side a little bit. So let's see; over here I can divide both terms by 20. Let me factor out 20 because I think then it's going to end up being a difference of squares.

If I factor out a 20, this is going to be the same thing as (20(y^2 - 4)), and (y^2 - 4) we can rewrite as ((y + 2)(y - 2)). It is a difference of squares, so let me write that: ((y + 2)(y - 2)).

All right, this down here (4y^2 - 8y), well, it looks like we can factor out a 4Y. So this is going to be the same thing as (4y(y - 2)). All right, so let me cross that out, so it's the same thing as (4y(y - 2)), and I already see this (y - 2) here and this (y - 2) here are going to cancel out.

And let's see; up here both terms are divisible by (y^2). So I can rewrite this as... I don't know if this is actually going to be helpful because it's going to... If you factor... Well, let me just do it just in case. So that's the same thing as (y^2(y^2)(y + 9)). All right?

And so we can rewrite all of these things. If we were to multiply everything together, we would end up getting in the numerator (20(y + 2)(y - 2)(y^2)(y + 9)). I'm just multiplying all the numerators. And that's going to be over, in the denominator I would have whatever the expression D is, times (4y(y - 2)).

And that's all going to be equal to 1. Now let's think about it: we can divide; we have (y - 2 / y - 2), so those cancel out. Let's see; we can divide the numerator and the denominator by y, so that would just become 1, and then that would just become (y) to the first power.

And so what we’d be left with in the numerator is (20(y)(y + 2)(y + 9)) over (4D). This is equal to 1. Now if we want to solve for D, well, we could just multiply both sides by D, and (1 \times D) is just going to be D. So you're going to have (D = 5(y)(y + 2)(y + 9)), and we're done.

This is D: this is the polynomial—whoops, that is the polynomial expression that we are looking for. If you were to substitute this back in and then try to simplify it, well, you would end up with all of this over here, and D would be this, and so it would all just cancel out, and you would be left with one for all real values y for which the expression on the left is actually defined.

And, you know, there are some values of Y for which the expression on the left is not defined. If Y is equal to zero, this denominator is zero, and you're dividing by zero. Well, that's not defined. And then when you multiply by the reciprocal, if this were to become zero, that wouldn't be cool either.

There are multiple ways to make this equal to zero. Y could be equal to 9; that would also make this bottom zero. So we could think about that if we wanted to, but they're not asking us to do that. They're saying for all real values for y for which the expression is defined, find the D that makes all of this business equal to one, and we just did that.

More Articles

View All
When Cities Were Cesspools of Disease | Nat Geo Explores
Imagine living in darkness. You’re in a roof the size of a closet with your entire family. I can’t see a thing, but you can hear and smell everything—every breath, every sneeze, every cough that hits your face. This is life in a 19th-century city. There’…
A Smarter Path | Chasing Genius | National Geographic
I was about six. My favorite toy was my slot car track, and what that really is, is little electric cars on an electric road. That electric road, the thing stuck with me. I am an engineer. Rather than to make a better mousetrap, I chose to make the world…
15 Traits Of A Weak Person
We all know a weak person is easily influenced by others’ ideas and opinions, but not necessarily by their own. The confidence that comes from knowing you deserve something motivates you to perform the acts and prove your worth, and you exhibit traits tha…
Relating fractions to 1
We are told to select the two fractions that are greater than one, so pause this video and see if you can figure out which two of these fractions are greater than one. All right, now let’s work on this together. The main realization here, the main thing …
Why being yourself is ruining your life
Just be yourself has become sort of a statement that people venerate these days. People celebrate just be yourself probably because it kind of feels like a warm hug. Just be yourself and everything’s gonna be okay. It feels kind of empathetic, understandi…
Warren Buffett: How to Invest in an Overvalued Market
Some people are not actually emotionally or psychologically fit to own stocks, but I think there are more of them that would be if you get educated on what you’re really buying, which is part of a business. There is Mr. Warren Buffett, the world’s best in…