yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Unbounded limits | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So right over here we have the graph of y is equal to one over x squared, and my question to you is: What is the limit of one over x squared as x approaches zero? Pause this video and see if you can figure that out.

Well, when you try to figure it out, you immediately see something interesting happening at x equals zero. The closer we get to zero from the left, you take one over x squared; it just gets larger and larger and larger. It doesn't approach some finite value; it's unbounded, has no bound.

The same thing is happening as we approach from the right. As we get values closer and closer to zero from the right, we get larger and larger values for one over x squared without bound. So, terminology that folks will sometimes use where they're both going in the same direction but it's unbounded is they'll say this limit is unbounded.

In some contexts, you might hear teachers say that this limit does not exist, and it definitely does not exist if you're thinking about approaching a finite value. In future videos, we'll start to introduce ideas of infinity and notations around limits and infinity where we can get a little bit more specific about what type of limit this is.

But with that out of the way, let's look at another scenario. This right over here you might recognize is the graph of y is equal to 1 over x, so I'm going to ask you the same question: Pause this video and think about what's the limit of one over x as x approaches zero. Pause this video and figure it out.

All right, so here when we approach from the left, we get more and more and more negative values, while when we approach from the right, we're getting more and more positive values. So in this situation where we're not getting unbounded in the same direction, the previous example we were both, we were being unbounded in the positive direction, but here, from the left, we're getting unbounded in the negative direction, while from the right, we're getting unbounded in the positive direction.

And so when you're thinking about the limit as you approach a point, if it's not even approaching the same value or even the same direction, you would just clearly say that this limit does not exist. Does not exist. So this is a situation where you would not even say that this is an unbounded limit or that the limit is unbounded because you're going in two different directions. When you approach from the right and when you approach from the left, you would just clearly say does not exist.

More Articles

View All
Graphical limit at point discontinuity
So here we have the graph ( y = G(x) ). We have a little point discontinuity right over here at ( x = 7 ), and what we want to do is figure out what is the limit of ( G(x) ) as ( x ) approaches 7. So essentially, we say, “Well, what is the function appro…
Safari Live - Day 249 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. It is a perfect summer’s afternoon for a battler to be soaring about in the heat waves that are coming up from the earth. It…
Relative adverbs | The parts of speech | Grammar | Khan Academy
Hey Grians! Today we’re going to talk about three of the relative adverbs in English, which are where, when, and why. And this over here is Peggy the Dragon. We’re going to use the story of Peggy the Dragon in order to figure out how to use these relative…
This Duck Has a Foot Growing On Its Head - Smarter Every Day 25
Hey, it’s me Destin. This week I’ve been in the lab, or my garage, working on my thesis. So, I’m trying to finish it, so I can’t give you an awesome video this week. To hold you over, I’ll give you some video of when me and my daughter went to the fair an…
How Airbnb Will CRASH the Housing Market
Nobody is paying attention to something that could finally burst the Ducky Long bubble in the U.S. housing market. Everyone is worried about the housing market crashing. Stocks have gotten crushed this year; bonds have pummeled. The concern is that real e…
Zeros of polynomials (multiplicity) | Polynomial graphs | Algebra 2 | Khan Academy
All right, now let’s work through this together. And we can see that all of the choices are expressed as a polynomial in factored form. And factored form is useful when we’re thinking about the roots of a polynomial, the x-values that make that polynomi…