yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Unbounded limits | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So right over here we have the graph of y is equal to one over x squared, and my question to you is: What is the limit of one over x squared as x approaches zero? Pause this video and see if you can figure that out.

Well, when you try to figure it out, you immediately see something interesting happening at x equals zero. The closer we get to zero from the left, you take one over x squared; it just gets larger and larger and larger. It doesn't approach some finite value; it's unbounded, has no bound.

The same thing is happening as we approach from the right. As we get values closer and closer to zero from the right, we get larger and larger values for one over x squared without bound. So, terminology that folks will sometimes use where they're both going in the same direction but it's unbounded is they'll say this limit is unbounded.

In some contexts, you might hear teachers say that this limit does not exist, and it definitely does not exist if you're thinking about approaching a finite value. In future videos, we'll start to introduce ideas of infinity and notations around limits and infinity where we can get a little bit more specific about what type of limit this is.

But with that out of the way, let's look at another scenario. This right over here you might recognize is the graph of y is equal to 1 over x, so I'm going to ask you the same question: Pause this video and think about what's the limit of one over x as x approaches zero. Pause this video and figure it out.

All right, so here when we approach from the left, we get more and more and more negative values, while when we approach from the right, we're getting more and more positive values. So in this situation where we're not getting unbounded in the same direction, the previous example we were both, we were being unbounded in the positive direction, but here, from the left, we're getting unbounded in the negative direction, while from the right, we're getting unbounded in the positive direction.

And so when you're thinking about the limit as you approach a point, if it's not even approaching the same value or even the same direction, you would just clearly say that this limit does not exist. Does not exist. So this is a situation where you would not even say that this is an unbounded limit or that the limit is unbounded because you're going in two different directions. When you approach from the right and when you approach from the left, you would just clearly say does not exist.

More Articles

View All
Killer Whales: Exxon Valdez Oil Spill Nearly Decimated This Pod (Part 2) | National Geographic
Toa Nutella sweet, huh? Boom, channel 16. In the morning, we make contact with Craig Matka. He’s agreed to give us rare access to his research. Most studies on the effects of the spill started after the fact, but Craig’s work predates the spill. So if any…
Article VI of the Constitution | National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m learning more about Article 6 of the US Constitution. Article 6 is, as we’ll soon see, kind of a constitutional grab bag. It covers debts, religious tests for office, and it establishes the Constitution as …
Help Khan Academy Double Down On Our Efforts
Hi everyone, Sal Khan here from Khan Academy, and I just wanted to remind you that if you’re in the position to do so, to think about making a donation to Khan Academy. We are a not-for-profit organization, and we can only exist through donations from fol…
Using matrices to represent data: Networks | Matrices | Precalculus | Khan Academy
We’re told this network diagram represents the different train routes between three cities. Each node is a city, and each directed arrow represents a direct bus route from city to city. So, for example, this arrow right over here, I guess, would represent…
Dreamcraft (S18) - YC Tech Talks: Gaming 2020 (November 9th, 2020)
Um, so we are Dreamcraft. This is Tian; I’m the founder of Dreamcraft. We went through Y Combinator in the summer 2018 batch. We are building a platform for anybody to create, publish, and monetize games without programming expertise. We believe that the…
Worked example: separable differential equation (with taking exp of both sides) | Khan Academy
What we’re going to do in this video is see if we can solve the differential equation: the derivative of y with respect to x is equal to x times y. Pause this video and see if you can find a general solution here. So, the first thing that my brain likes …