yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Unbounded limits | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So right over here we have the graph of y is equal to one over x squared, and my question to you is: What is the limit of one over x squared as x approaches zero? Pause this video and see if you can figure that out.

Well, when you try to figure it out, you immediately see something interesting happening at x equals zero. The closer we get to zero from the left, you take one over x squared; it just gets larger and larger and larger. It doesn't approach some finite value; it's unbounded, has no bound.

The same thing is happening as we approach from the right. As we get values closer and closer to zero from the right, we get larger and larger values for one over x squared without bound. So, terminology that folks will sometimes use where they're both going in the same direction but it's unbounded is they'll say this limit is unbounded.

In some contexts, you might hear teachers say that this limit does not exist, and it definitely does not exist if you're thinking about approaching a finite value. In future videos, we'll start to introduce ideas of infinity and notations around limits and infinity where we can get a little bit more specific about what type of limit this is.

But with that out of the way, let's look at another scenario. This right over here you might recognize is the graph of y is equal to 1 over x, so I'm going to ask you the same question: Pause this video and think about what's the limit of one over x as x approaches zero. Pause this video and figure it out.

All right, so here when we approach from the left, we get more and more and more negative values, while when we approach from the right, we're getting more and more positive values. So in this situation where we're not getting unbounded in the same direction, the previous example we were both, we were being unbounded in the positive direction, but here, from the left, we're getting unbounded in the negative direction, while from the right, we're getting unbounded in the positive direction.

And so when you're thinking about the limit as you approach a point, if it's not even approaching the same value or even the same direction, you would just clearly say that this limit does not exist. Does not exist. So this is a situation where you would not even say that this is an unbounded limit or that the limit is unbounded because you're going in two different directions. When you approach from the right and when you approach from the left, you would just clearly say does not exist.

More Articles

View All
Underwater Explosions (Science with Alan Sailer!) - Smarter Every Day 63
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So today, I’m in California, and I have the great privilege of introducing the man, Alan Sailer. Hello, Alan! Sailer is, if you don’t know, one of the best high-speed photographers that currently do…
Homeschooling your kids? Learn how to use our weekly math learning plans
Hello! Welcome! We are so glad to have several of you, a few hundred already here today, and really appreciate your time. My name is Dave Herron. I work on our team that supports teachers in school districts at Khan Academy, and I am joined today, about t…
The elements of a drama | Reading | Khan Academy
Hello readers! Today let us talk about drama. Enter stage right, and let us tread the boards together. Drama, also known as theater or plays, is a specialized kind of story that is meant to be performed. If you’ve ever seen a movie, a television show, or …
Introduction to exponential decay
What we’re going to do in this video is quickly review exponential growth and then use that as our platform to introduce ourselves to exponential decay. So let’s review exponential growth. Let’s say we have something that… and I’ll do this on a table here…
Brave New Words - Greg Brockman & Sal Khan
Hi everyone! It’s here from KH Academy, and as some of you all know, I have released my second book, Brave New Words, about the future of AI in education and work. It’s available wherever you might buy your books. But as part of the research for that book…
How Finding This Human Ancestor Is Making Us Rethink Our Origins | Nat Geo Live
MARINA ELLIOT: Homo Naledi’s story is changing our story, the story of human origins. And, in fact, this discovery is changing how paleoanthropologists and scientists think about and craft the story of our past. (audience applause) All of you have actuall…