yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing shifted functions | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy.

We can see we can change the graph of ( G(x) ), but let's see, we want to graph it properly. So, let's see how they relate. Well, let's think about a few things. Let's first just make ( G(x) ) completely overlap. Well, actually, that's completely easier to say than to do. Okay, there you go. Now they're completely overlapping, and let's see how they're different.

Well, ( G(x) ) if you look at what's going on here, instead of having an ( x^2 ), we have an ( (x - 2)^2 ). So, one way to think about it is when ( x = 0 ), you have ( 0^2 = 0 ); but how do you get zero here? Well, ( x ) has got to be equal to 2. ( (2 - 2)^2 = 0^2 ) if we don't look at the -4 just yet.

So, we would want to shift this graph over two to the right. This is essentially how much we shift to the right. It's sometimes a little bit counterintuitive that we have a negative there, because you might say, "Well, negative? That makes me think that I want to shift to the left." But you just have to remind yourself, "Okay, for the original graph, when it was just ( x^2 ), to get to ( 0^2 ), I just have to put ( x = 0 ). Now, to get a ( 0^2 ), I have to put in a 2." So this is actually shifting the graph to the right.

And so, what do we do with this -4? Well, this is a little bit more intuitive, or at least for me when I first learned it. This literally will just shift the graph down. Whatever your value is of ( (x - 2)^2 ), it's going to shift it down by four.

So, what we want to do is just shift both of these points down by four. So, this is going to go from the coordinate ( (5, 9) ) to ( (5, 5) ), and it's going to go from ( (2, 0) ) to ( (2, -4) ). Did I do that right? I think that's right.

Essentially, what we have going on is ( G(x) ) is ( f(x) ) shifted two to the right and four down—two to the right and four down. Notice if you look at the vertex here, we shifted two to the right and four down, and I shifted this one also. This one also, I shifted two to the right and four down.

And there you have it. We have graphed ( G(x) ), which is a shifted version of ( f(x) ).

More Articles

View All
Where is Scandinavia?
Scan-duh-nay-vee-ah! Look at this Arctic wonderland – fjords, saunas, fjords, lutefisk, blondes, vikings, blond vikings?, fjords, Ikea, babies in government issued boxes, Santa, death metal, and fjords. But like, where exactly are the borders of Scandina…
'This Is Karma, Ladies And Gentlemen!': Dana White Speaks During Trump Victory Celebration
We also have a Manda White who has done some job. He’s that tough guy. So Dana started UFC and, uh, came to me. Do you mind if I use your? Nobody wanted to give him a ring because they said it’s a rough sport—a little rough. I helped him out a little bit,…
The Lost Forest | Nobel Peace Prize Shorts
[Music] [Applause] [Music] [Music] Wow, so look puppy! But can you see? This is where daddy’s going to go, gonna go in, climb this mountain. Yes, my name is Julian Bayliss. I’m a conservation scientist. I’m an ecologist. My job is to try and help conserve…
Shocking Footage of Baby Elephant Tossed Around by Adult, Explained | National Geographic
Suddenly, a young male comes into view, pushing a baby elephant. “Oh my God, that’s a boom!” No, no, he picks it up. Oh, meanwhile, a female, if the baby’s mother, I believe, comes in and tries to rescue the calf and runs in front of him. He runs after h…
Cannabis 101 | National Geographic
(Gentle upbeat music) [Narrator] Cannabis, it’s the most frequently used illicit substance in the United States and arguably, one of the most controversial. Cannabis, or marijuana, is a drug derived from certain strains of the plant cannabis sativa. The …
Introduction to limits at infinity | Limits and continuity | AP Calculus AB | Khan Academy
We now have a lot of experience taking limits of a function. So if I’m taking the limit of f of x, we’re going to think about what does f of x approach as x approaches some value a. This would be equal to some limit. Now, everything we’ve done up till no…