yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing shifted functions | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy.

We can see we can change the graph of ( G(x) ), but let's see, we want to graph it properly. So, let's see how they relate. Well, let's think about a few things. Let's first just make ( G(x) ) completely overlap. Well, actually, that's completely easier to say than to do. Okay, there you go. Now they're completely overlapping, and let's see how they're different.

Well, ( G(x) ) if you look at what's going on here, instead of having an ( x^2 ), we have an ( (x - 2)^2 ). So, one way to think about it is when ( x = 0 ), you have ( 0^2 = 0 ); but how do you get zero here? Well, ( x ) has got to be equal to 2. ( (2 - 2)^2 = 0^2 ) if we don't look at the -4 just yet.

So, we would want to shift this graph over two to the right. This is essentially how much we shift to the right. It's sometimes a little bit counterintuitive that we have a negative there, because you might say, "Well, negative? That makes me think that I want to shift to the left." But you just have to remind yourself, "Okay, for the original graph, when it was just ( x^2 ), to get to ( 0^2 ), I just have to put ( x = 0 ). Now, to get a ( 0^2 ), I have to put in a 2." So this is actually shifting the graph to the right.

And so, what do we do with this -4? Well, this is a little bit more intuitive, or at least for me when I first learned it. This literally will just shift the graph down. Whatever your value is of ( (x - 2)^2 ), it's going to shift it down by four.

So, what we want to do is just shift both of these points down by four. So, this is going to go from the coordinate ( (5, 9) ) to ( (5, 5) ), and it's going to go from ( (2, 0) ) to ( (2, -4) ). Did I do that right? I think that's right.

Essentially, what we have going on is ( G(x) ) is ( f(x) ) shifted two to the right and four down—two to the right and four down. Notice if you look at the vertex here, we shifted two to the right and four down, and I shifted this one also. This one also, I shifted two to the right and four down.

And there you have it. We have graphed ( G(x) ), which is a shifted version of ( f(x) ).

More Articles

View All
Why Pride Is the Worst | The Seven Deadly Sins | PRIDE
Of all angels, Lucifer was the most magnificent God had created. Aware of his beauty, brilliance, and many qualities, Lucifer felt elevated above the other angels and, at some point, even above God. He wanted to be like God, so he created a throne for him…
How to sell a $24,000,000 private jet.
He wants a 550 and a 450. He wants to spend the budget total amount for two aircraft, maybe 20 to 25 million range. 550, he said, instead of buying your 450 as a second aircraft, we might end up buying two 550s. Right? He just saw one of your ads. I beli…
Why War Zones Need Science | Podcast | Overheard at National Geographic
So you can see a skull very clearly up there, and actually, if you look closely, you can see there’s a number of other bones: long bones, bones of the foot. So, a whole pile of bones here. This is Ella Al-Shamahi; she’s standing on a rocky hillside next t…
Escape to the Stunning Wilderness of Ontario | National Geographic
A spirit is everywhere. Spirits in the water, spirits in the land, spirits in the animals. You know, it’s not empty. There’s no such thing as an empty earth, empty land, as the spirits are still learned. So that energy still learned, that life. To me, to …
Introduction to adding decimals tenths
In this video, we’re going to introduce ourselves to the idea of adding decimals, and I encourage you, as we work through these problems, to keep pausing the video and seeing if you can think about it on your own before we work through it together. We’re …
Why I told one woman to leave her husband & make millions | Ask Mr. Wonderful #17 Kevin O'Leary
[Music] Everybody tell you what I do about music on all my social media. One of the big problems is rights; music rights. So you don’t want to rip anybody’s music off. That’s so uncool and often acquiring rights takes a long time. So if you’re ripping out…