yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing shifted functions | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy.

We can see we can change the graph of ( G(x) ), but let's see, we want to graph it properly. So, let's see how they relate. Well, let's think about a few things. Let's first just make ( G(x) ) completely overlap. Well, actually, that's completely easier to say than to do. Okay, there you go. Now they're completely overlapping, and let's see how they're different.

Well, ( G(x) ) if you look at what's going on here, instead of having an ( x^2 ), we have an ( (x - 2)^2 ). So, one way to think about it is when ( x = 0 ), you have ( 0^2 = 0 ); but how do you get zero here? Well, ( x ) has got to be equal to 2. ( (2 - 2)^2 = 0^2 ) if we don't look at the -4 just yet.

So, we would want to shift this graph over two to the right. This is essentially how much we shift to the right. It's sometimes a little bit counterintuitive that we have a negative there, because you might say, "Well, negative? That makes me think that I want to shift to the left." But you just have to remind yourself, "Okay, for the original graph, when it was just ( x^2 ), to get to ( 0^2 ), I just have to put ( x = 0 ). Now, to get a ( 0^2 ), I have to put in a 2." So this is actually shifting the graph to the right.

And so, what do we do with this -4? Well, this is a little bit more intuitive, or at least for me when I first learned it. This literally will just shift the graph down. Whatever your value is of ( (x - 2)^2 ), it's going to shift it down by four.

So, what we want to do is just shift both of these points down by four. So, this is going to go from the coordinate ( (5, 9) ) to ( (5, 5) ), and it's going to go from ( (2, 0) ) to ( (2, -4) ). Did I do that right? I think that's right.

Essentially, what we have going on is ( G(x) ) is ( f(x) ) shifted two to the right and four down—two to the right and four down. Notice if you look at the vertex here, we shifted two to the right and four down, and I shifted this one also. This one also, I shifted two to the right and four down.

And there you have it. We have graphed ( G(x) ), which is a shifted version of ( f(x) ).

More Articles

View All
How I built a private jet in my office!
14 years ago, I had to come up with the idea of how to build the best showroom in the world. But the biggest issue was, what the hell do I put inside the window of this showroom? I had to make sure that people looking in from the window outside didn’t thi…
Why Geeks are Sexy: The Wing Girls
Hey Vsauce! I’ve got something special for you today. I’m sure you’ve heard of a wingman before, but have you ever heard of a wing girl? Well, guess what? There’s two of them right now! They met with Ben and Mark in LA like a few weeks ago, and I said, “H…
The Power of Radical Acceptance
Some experiences weigh on us like a heavy cross that’s almost impossible to bear. They paralyze us with guilt or make us hide in shame. And in other cases, they leave us with an immense amount of pain for us to process. Many people either fight or stick t…
The Beginning of Infinity, Part 1
Welcome to the eponymous novel podcast. The main topic that we started out on was timeless principles of wealth creation, and then we’ve been touching a little bit on internal happiness and peace and well-being. But I am, first and foremost, a student of …
MAKE YOUR CAT A DJ -- and more! LÜT #18
Bake two pies at the same time and then relax on pancake pillows. It’s episode 18 of LÜT. You can also choose to use emoticon pillows or a True Blood necklace. If you’re a neat freak, protect your tables with Portal 2 warning sign coasters. And then stor…
Fraction multiplication as scaling examples
This right over here is an image from an exercise on Khan Academy, and it says compare using greater than, less than, or equal to. On the left, we have one fourth times five thousand, and we want to compare that to five thousand. On Khan Academy, you’d c…