yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing shifted functions | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy.

We can see we can change the graph of ( G(x) ), but let's see, we want to graph it properly. So, let's see how they relate. Well, let's think about a few things. Let's first just make ( G(x) ) completely overlap. Well, actually, that's completely easier to say than to do. Okay, there you go. Now they're completely overlapping, and let's see how they're different.

Well, ( G(x) ) if you look at what's going on here, instead of having an ( x^2 ), we have an ( (x - 2)^2 ). So, one way to think about it is when ( x = 0 ), you have ( 0^2 = 0 ); but how do you get zero here? Well, ( x ) has got to be equal to 2. ( (2 - 2)^2 = 0^2 ) if we don't look at the -4 just yet.

So, we would want to shift this graph over two to the right. This is essentially how much we shift to the right. It's sometimes a little bit counterintuitive that we have a negative there, because you might say, "Well, negative? That makes me think that I want to shift to the left." But you just have to remind yourself, "Okay, for the original graph, when it was just ( x^2 ), to get to ( 0^2 ), I just have to put ( x = 0 ). Now, to get a ( 0^2 ), I have to put in a 2." So this is actually shifting the graph to the right.

And so, what do we do with this -4? Well, this is a little bit more intuitive, or at least for me when I first learned it. This literally will just shift the graph down. Whatever your value is of ( (x - 2)^2 ), it's going to shift it down by four.

So, what we want to do is just shift both of these points down by four. So, this is going to go from the coordinate ( (5, 9) ) to ( (5, 5) ), and it's going to go from ( (2, 0) ) to ( (2, -4) ). Did I do that right? I think that's right.

Essentially, what we have going on is ( G(x) ) is ( f(x) ) shifted two to the right and four down—two to the right and four down. Notice if you look at the vertex here, we shifted two to the right and four down, and I shifted this one also. This one also, I shifted two to the right and four down.

And there you have it. We have graphed ( G(x) ), which is a shifted version of ( f(x) ).

More Articles

View All
My Multi-Million Dollar Watch Collection that will DOUBLE VALUE with Red Bands | Kevin O'Leary
Girlfriend, are you crazy? Chicken, you just left your job, said goodbye to your boss, and you’re starting your own restaurant! Why? Actually, equity, baby! That’s what it’s all about. You’re not! You are now! Good luck! I’m gonna come and eat there; bett…
WE ATE GOAT BRAINS - Smarter Every Day 20
(African music) (Destin) Okay, Smarter Every Day. Pringles can will make the absolute perfect spaghetti holder when you’re done with the Pringles. There you go. Reuse. Recycle, reduce, reuse, in Africa. Right? Hey, Bob Marley-pants, are you making spa…
Robinhood Just Got Cancelled
What’s up, you guys? It’s Graham here! So, you might have recently noticed that something has been missing from the channel lately, and no, it’s not the free stock you can get worth all the way up to $50 down below in the description. Instead, it’s some …
Shouldn't We Just Copy Warren Buffett's Portfolio?
I could not come up with these ideas on my own. I came up with this idea from Warren and Charlie, and I copied it. So, one of the most important models that you can adopt is the model of cloning. When you see someone doing something smart, uh, just incorp…
Inside a Kangaroo Pouch - Smarter Every Day 139
Hey, it’s me Destin, welcome back to Smarter Every Day. Simple question here. Do you know, like really know, what a kangaroo pouch looks like? Several years ago, I was invited to Australia to help promote National Science Week with my friend Chris, who ha…
Wu-wei | The Art of Letting Things Happen
Once upon a time, a novice farmer indulged himself in motivational videos. He became familiar with ideas like the importance of ‘effort,’ the ‘hustle culture,’ and ‘work hard, play hard.’ After binge-watching for days, he walked onto his farm, fired up, …