yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing shifted functions | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy.

We can see we can change the graph of ( G(x) ), but let's see, we want to graph it properly. So, let's see how they relate. Well, let's think about a few things. Let's first just make ( G(x) ) completely overlap. Well, actually, that's completely easier to say than to do. Okay, there you go. Now they're completely overlapping, and let's see how they're different.

Well, ( G(x) ) if you look at what's going on here, instead of having an ( x^2 ), we have an ( (x - 2)^2 ). So, one way to think about it is when ( x = 0 ), you have ( 0^2 = 0 ); but how do you get zero here? Well, ( x ) has got to be equal to 2. ( (2 - 2)^2 = 0^2 ) if we don't look at the -4 just yet.

So, we would want to shift this graph over two to the right. This is essentially how much we shift to the right. It's sometimes a little bit counterintuitive that we have a negative there, because you might say, "Well, negative? That makes me think that I want to shift to the left." But you just have to remind yourself, "Okay, for the original graph, when it was just ( x^2 ), to get to ( 0^2 ), I just have to put ( x = 0 ). Now, to get a ( 0^2 ), I have to put in a 2." So this is actually shifting the graph to the right.

And so, what do we do with this -4? Well, this is a little bit more intuitive, or at least for me when I first learned it. This literally will just shift the graph down. Whatever your value is of ( (x - 2)^2 ), it's going to shift it down by four.

So, what we want to do is just shift both of these points down by four. So, this is going to go from the coordinate ( (5, 9) ) to ( (5, 5) ), and it's going to go from ( (2, 0) ) to ( (2, -4) ). Did I do that right? I think that's right.

Essentially, what we have going on is ( G(x) ) is ( f(x) ) shifted two to the right and four down—two to the right and four down. Notice if you look at the vertex here, we shifted two to the right and four down, and I shifted this one also. This one also, I shifted two to the right and four down.

And there you have it. We have graphed ( G(x) ), which is a shifted version of ( f(x) ).

More Articles

View All
Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy
Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes. Let’s see what’s going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the l…
Reimagining Dinosaurs with Women of Impact | National Geographic
Okay, hi! I think we’re good to go. Welcome everybody! Um, today’s Women of Impact panel on reimagining dinosaurs, and we’ve got three incredible women paleontologists around the world, with London and the United States represented today in this panel. Um…
15 Signs You are the New Rich
When talking about rich people, you probably picture some old or wrinkly white man wearing a suit, sitting in a boardroom. Well, there is a new kind of rich individual that stays as far away as possible from this kind of identity. They don’t give an f abo…
Problems Only Smart People Can Solve
You know, there’s a time and place when only certain types of people can solve a particular problem. It’s when you call in the big guns, and today we’re taking a look at some of those problems. Welcome to Alux. First up, what and when to cut. Just like a…
How To Get Rich According To Robert Kiyosaki
There are a million ways to make $1,000,000. And this is how Robert Kiyosaki does it. Robert Kiyosaki is a financial educator, entrepreneur, and the author of Rich Dad, Poor Dad, one of the best-selling personal finance books of all time. He’s challenged …
How to Hire HIGH ACHIEVING SALES PEOPLE | Ask Mr. Wonderful #2 Kevin O'Leary
Oh, I just love the smell of a good royalty deal in the morning! Welcome to another episode of Ask Mr. Wonderful, and I mean ask me anything! You ask the questions, and I give you the answers. Bring them on! Hey Mr. Wonderful, I had a quick question for …