yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing shifted functions | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

We're told the graph of the function ( f(x) = x^2 ) we see it right over here in gray is shown in the grid below. Graph the function ( G(x) = (x - 2)^2 - 4 ) in the interactive graph, and this is from the shifting functions exercise on Khan Academy.

We can see we can change the graph of ( G(x) ), but let's see, we want to graph it properly. So, let's see how they relate. Well, let's think about a few things. Let's first just make ( G(x) ) completely overlap. Well, actually, that's completely easier to say than to do. Okay, there you go. Now they're completely overlapping, and let's see how they're different.

Well, ( G(x) ) if you look at what's going on here, instead of having an ( x^2 ), we have an ( (x - 2)^2 ). So, one way to think about it is when ( x = 0 ), you have ( 0^2 = 0 ); but how do you get zero here? Well, ( x ) has got to be equal to 2. ( (2 - 2)^2 = 0^2 ) if we don't look at the -4 just yet.

So, we would want to shift this graph over two to the right. This is essentially how much we shift to the right. It's sometimes a little bit counterintuitive that we have a negative there, because you might say, "Well, negative? That makes me think that I want to shift to the left." But you just have to remind yourself, "Okay, for the original graph, when it was just ( x^2 ), to get to ( 0^2 ), I just have to put ( x = 0 ). Now, to get a ( 0^2 ), I have to put in a 2." So this is actually shifting the graph to the right.

And so, what do we do with this -4? Well, this is a little bit more intuitive, or at least for me when I first learned it. This literally will just shift the graph down. Whatever your value is of ( (x - 2)^2 ), it's going to shift it down by four.

So, what we want to do is just shift both of these points down by four. So, this is going to go from the coordinate ( (5, 9) ) to ( (5, 5) ), and it's going to go from ( (2, 0) ) to ( (2, -4) ). Did I do that right? I think that's right.

Essentially, what we have going on is ( G(x) ) is ( f(x) ) shifted two to the right and four down—two to the right and four down. Notice if you look at the vertex here, we shifted two to the right and four down, and I shifted this one also. This one also, I shifted two to the right and four down.

And there you have it. We have graphed ( G(x) ), which is a shifted version of ( f(x) ).

More Articles

View All
Jessica Livingston at Female Founders Conference 2014
I’m Jessica Livingston. I’m one of the founders of Y Combinator, and I’m so happy you’re all here today. I’ve been reading; like some of you have come from so far away. It’s just thrilling. I’ve been in the startup world for nine years now, and this is th…
Why Millennials Should NOT Invest
What’s up, you guys? It’s Graham here. So, as many of you know, I spend a lot of time on the internet. Like, half my day is spent browsing Reddit, reading up on investments, watching YouTube videos, and reacting to bad spending habits. I do all of this be…
Worked example: Determining an empirical formula from combustion data | AP Chemistry | Khan Academy
We are told that a sample of a compound containing only carbon and hydrogen atoms is completely combusted, producing 5.65 grams of carbon dioxide and 3.47 grams of H2O, or water. What is the empirical formula of the compound? So pause this video and see i…
What Will Happen In One Billion Years?
If you could spend one day in the year 2100 to see what life would be like in that time, what do you think you would find? The idea of seeing the future—seeing life as we know it in a far, distant timescale—has been in the minds of people for thousands of…
How do you prepare yourself mentally to be an entrepreneur?
So how do you prepare yourself mentally to be an entrepreneur? What I will say is maybe borrowing a little bit from Buddhism or philosophical Hinduism, but it’s really this notion to try to not get attached to the outcome. Obviously, you’re going into en…
HOLDING AN EXPLOSION at 20,000 fps - Smarter Every Day 156
Hey, it’s me Destin. Welcome back to Smarter Every Day (SED). So excited about this video! In the last episode of SED, I showed you my transparent potato gun, at 3,000 fps during the day. 3, 2, 1. But this episode it’s going to be the same transparent pot…