From mach-20 glider to humming bird drone - Regina Dugan
[Music] [Applause] You should be nice to nerds. In fact, I'd go so far as to say if you don't already have a nerd in your life, you should get one. I'm just saying scientists and engineers change the world. I'd like to tell you about a magical place called DARPA, where scientists and engineers defy the impossible and refuse to fear failure.
Now, these two ideas are connected more than you may realize, because when you remove the fear of failure, impossible things suddenly become possible. If you want to know how, ask yourself this question: what would you attempt to do if you knew you could not fail? If you really ask yourself this question, you can't help but feel uncomfortable. I feel a little uncomfortable because when you ask it, you begin to understand how the fear of failure constrains you, how it keeps us from attempting great things, and life gets dull. Amazing things stop happening. Sure, good things happen, but amazing things stop happening.
Now, I should be clear, I'm not encouraging failure. I'm discouraging fear of failure, because it's not failure itself that constrains us. The path to truly new, never been done before things always has failure along the way. We're tested, and in part that testing feels an appropriate part of achieving something great. Clemens once said life gets interesting when we fail because it's a sign that we've surpassed ourselves.
In 1895, Lord Kelvin declared that heavier than air flying machines were impossible. In October of 1903, the prevailing opinion of expert aerodynamicists was that maybe in 10 million years, we could build an aircraft that would fly. Two months later, on December 17th, Orville Wright powered the first airplane across a beach in North Carolina. The flight lasted 12 seconds and covered 120 feet. That was 1903.
One year later, the next declarations of impossibilities began. Ferdinand Foch, a French army general credited with having one of the most original and subtle minds in the French army, said airplanes are interesting toys but of no military value. Forty years later, A.O. experts coined the term transonic; they debated should it have one "s" or two. You see, they were having trouble in this flight regime and it wasn't at all clear that we could fly faster than the speed of sound.
In 1947, there was no wind tunnel data beyond Mach 0.85. Yet, on Tuesday, October 14th, 1947, Chuck Yeager climbed into the cockpit of his Bell X1, and he flew towards an unknown possibility. In so doing, he became the first pilot to fly faster than the speed of sound. Six of eight Atlas rockets blew up on the pad; after 11 complete mission failures, we got our first images from space. On that first flight, we got more data than in all U2 missions combined. It took a lot of failures to get there.
Since we took to the sky, we have wanted to fly faster and farther, and to do so, we've had to believe in impossible things. And we've had to refuse to fear failure. That's still true today. Today, we don't talk about flying trans-sonically or even supersonically; we talk about flying hypersonically—not Mach 2 or Mach 3, but Mach 20. At Mach 20, we can fly from New York to Long Beach in 11 minutes and 20 seconds. At that speed, the surface of the airfoil is the temperature of molten steel—3,500 degrees Fahrenheit—like a blast furnace. We are essentially burning the airfoil as we fly it, and we are flying it, or trying to.
DARPA's Hypersonic Test Vehicle is the fastest maneuvering aircraft ever built. It's boosted to near space at top a Minotaur 4 rocket. Now, the Minotaur 4 has too much impulse, so we have to bleed it off by flying the rocket at an 89° angle of attack for portions of the trajectory. That's an unnatural act for a rocket. The third stage has a camera; we call it Rocket Cam, and it's pointed at the hypersonic glider. This is the actual Rocket Cam footage from flight one. Now, to conceal the shape, we changed the aspect ratio a little bit, but this is what it looks like from the third stage of the rocket, looking at the unmanned glider as it heads into the atmosphere, back towards Earth.
We've flown twice. In the first flight, no aerodynamic control of the vehicle, but we collected more hypersonic flight data than in 30 years of ground-based testing combined. And in the second flight, three minutes of fully controlled aerodynamic flight at Mach 20. We must fly again because amazing, never been done before things require that you fly. You can't learn to fly at Mach 20 unless you fly. And while there's no substitute for speed, maneuverability is a very close second.
If a Mach 20 glider takes 11 minutes and 20 seconds to get from New York to Long Beach, a hummingbird would take, well, days. You see, hummingbirds are not hypersonic, but they are maneuverable. In fact, the hummingbird is the only bird that can fly backward. It can fly up, down, forwards, backwards, even upside down. And so, if we wanted to fly in this room or places where humans can't go, we'd need an aircraft small enough and maneuverable enough to do so.
This is a hummingbird drone; it can fly in all directions, even backwards. It can hover and rotate. This prototype aircraft is equipped with a video camera; it weighs less than one AA battery. It does not eat nectar. In 2008, it flew for a whopping 20 seconds; a year later, 2 minutes; then 6, eventually 11. Many prototypes crashed—many. But there's no way to learn to fly like a hummingbird unless you fly. It's beautiful, isn't it?
Wow, it's great! Matt is the first-ever hummingbird pilot. Failure is part of creating new and amazing things. We cannot both fear failure and make amazing new things, like a robot with the stability of a dog on rough terrain or maybe even ice— a robot that can run like a cheetah or climb stairs like a human, with the occasional clumsiness of a human. Or perhaps Spider-Man will one day be Gecko-Man.
A gecko can support its entire body weight with one toe. One square millimeter of a gecko's foot pad has 14,000 hair-like structures called setae; they are used to help it grip to surfaces using intermolecular forces. Today, we can manufacture structures that mimic the hairs of a gecko's foot. The result of 4x4 inches of artificial nano-gecko adhesive can support a static load of 660 pounds. That's enough to stick 6 42-inch plasma TVs to your wall— no nails! So much for Velcro, right?
And it's not just passive structures; it's entire machines. This is a spider mite; it's 1 mm long but looks like Godzilla next to these micro machines. In the world of Godzilla spider mites, we can make millions of mirrors, each one-thousandth the diameter of a human hair, moving at hundreds of thousands of times per second to make large screen displays so that we can watch movies like Godzilla in high def.
And if we can build machines at that scale, what about Eiffel Tower-like trusses at the micro scale? Today we are making metals that are lighter than Styrofoam—so light they can sit atop a dandelion puff and be blown away with a wisp of air—so light that you can make a car that two people can lift, but so strong that it has the crash worthiness of an SUV.
From the smallest wisp of air to the powerful forces of Nature's storms, there are 44 lightning strikes per second around the globe. Each lightning bolt heats the air to 44,000 degrees Fahrenheit— hotter than the surface of the Sun. What if we could use these electromagnetic pulses as beacons? Beacons in a moving network of powerful transmitters. Experiments suggest that lightning could be the next GPS.
Electrical pulses form the thoughts in our brains. Using a grid the size of your thumb with 32 electrodes on the surface of his brain, Tim uses his thoughts: "I want to control an advanced prosthetic arm," and his thoughts made him reach for Katie. This is the first time a human has controlled a robot with thought alone. Sorry, and it is the first time that Tim has held Katie's hand in seven years. That moment mattered to Tim and Katie.
And this green goo may someday matter to you. This green goo is perhaps the vaccine that could save your life. It was made in tobacco plants. Tobacco plants can make millions of doses of vaccines in weeks instead of months, and it might just be the first healthy use of tobacco ever.
And if it seems far-fetched that tobacco plants could make people healthy, what about gamers that could solve problems that experts can't solve? Last September, the gamers of Foldit solved the three-dimensional structure of the retroviral protease that contributes to AIDS in rhesus monkeys. Now, understanding this structure is very important for developing treatments for 15 years. It was unsolved in the scientific community. The gamers of Foldit solved it in 15 days.
Now, they were able to do so by working together. They were able to work together because they're connected by the internet, and others, also connected to the internet, used it as an instrument of democracy, and together they changed the fate of their nation. The internet is home to two billion people, or 30% of the world's population. It allows us to contribute and to be heard as individuals. It allows us to amplify our voices and our power as a group.
But it too had humble beginnings. In 1969, the internet was but a dream—a few sketches on a piece of paper. And then, on October 29th, the first packet-switched message was sent from UCLA to Stanford. The first two letters of the word "login"—that's all that made it through: an 'L' and an 'O.' And then a buffer overflow crashed the system. Two letters, an 'L' and an 'O'—now a worldwide force.
So, who are these scientists and engineers at a magical place called DARPA? They are nerds, and they are heroes among us. They challenge existing perspectives at the edges of science and under the most demanding of conditions. They remind us that we can change the world if we defy the impossible and we refuse to fear failure. They remind us that we all have nerd power; sometimes we just forget.
You see, there was a time when you weren't afraid of failure. When you were a great artist or a great dancer and you could sing, you were good at math, you could build things, you were an astronaut, an adventurer—Jacques Cousteau. You could jump higher, run faster, kick harder than anyone. You believed in impossible things, and you were fearless. You were totally and completely in touch with your inner superhero.
Scientists and engineers can indeed change the world. So can you. You were born to! So go ahead, ask yourself: what would you attempt to do if you knew you could not fail? Now, I want to say this is not easy. It's hard to hold on to this feeling—really hard. I guess in some way, I sort of believe it's supposed to be hard. Doubt and fear always creep in. We think someone else, someone smarter than us, someone more capable, someone with more resources will solve that problem. But there isn't anyone else—there's just you.
And if we're lucky, in that moment someone steps into that doubt and fear, takes a hand, and says, "Let me help you believe." Jason Harley did that for me. Jason started at DARPA on March 18th, 2010. He was with our transportation team. I saw Jason nearly every day, sometimes twice a day. And more so than most, he saw the highs and the lows, the celebrations and the disappointments.
And on one particularly dark day for me, Jason sat down and he wrote an email. He was encouraging but firm. And when he hit send, he probably didn't realize what a difference it would make. It mattered to me in that moment, and still today, when I doubt, when I feel afraid, when I need to reconnect with that feeling, I remember his words. They were so powerful. Supero. Supero. Supero.
[Music] Superhero! Superhero!
[Applause]
That is what being a superhero is all about. There is only time enough to iron your cape, and back to the skies for you. And remember, be nice to nerds. Thank you!
[Applause]
Thank you!
I have a couple of questions. The, um, so that glider of yours, the Mach 20 glider? The first one—uh, no control. It ended up in the Pacific, I think?
It did. What happened on that second flight?
Yeah, it also went in the Pacific, but this time under control.
Well, yeah, no, we didn't fly it into the Pacific, right? Um, no, there are multiple portions of the trajectory that are demanding in terms of really flying at that speed. And so in the second flight, we were able to get three minutes of fully aerodynamic control of the vehicle before we lost it.
I imagine you're not planning to open up to passenger service from New York to Long Beach? It might be a little warm.
What do you picture that glider being used for?
Well, our responsibility is to develop the technology for this. How it's ultimately used will be determined by the military. Now, the purpose of the vehicle, though, the purpose of the technology, is to be able to reach anywhere in the world in less than 60 minutes and to carry a payload of more than a few pounds.
Yeah, like what's the payload it could carry?
Well, I don't think we ultimately know what it will be, right? We gotta fly it first, but not necessarily just a camera.
Yeah, no, not necessarily just a camera. Um, it’s amazing. The hummingbird—I mean, I'm curious. You know, you started your beautiful sequence on flight with a plane kind of trying to flap its wings and failing horribly. And there haven't been that many planes built since that flap wings. Why did we think that this was the time to go biomimicry and copy a hummingbird? Isn't that a very expensive solution for a small, well-maneuverable flying object?
So, I mean, in part we wondered if it was possible to do it. And you have to revisit these questions over time. The folks at AeroVironment tried 300 or more different wing designs, 12 different forms of the avionics. It took them 10 full prototypes to get something that would actually fly.
But there's something really interesting about a flying machine that looks like something you'd recognize. So, we often talk about stealth as a means for avoiding any type of sensing. But when things look just natural, you also don't see them.
Ah! Ah! So it's not necessarily stealth; it's partly the look, actually.
Sure. Look at that cute hummingbird flying into my headquarters!
I mean, because that's the—that's, I think, as well as the—a.
At looking at that, I'm sure some people here are thinking, "You know, technology catches up so quick. How long is it before some crazed geek with a little remote control flies our drone through a window of the White House?" I mean, do you worry about the Pandora's box issue here?
Well, look, our singular mission is the creation and prevention of strategic surprise. That's what we do. It would be inconceivable for us to do that work if we didn't make people excited and uncomfortable with the things that we do.
At the same time, it's just the nature of what we do. Now, our responsibility is to push that edge, and you know we have to be, of course, mindful and responsible of how the technology is developed and ultimately used. But we can't simply close our eyes and pretend that it isn't advancing. It's advancing.
I mean, you're clearly a really inspiring leader. And, um, you persuade people to go to these great feats of invention. But at a personal level, I mean, in a way I can't imagine doing your job. Do you wake up in the night sometimes just asking questions about the possibly unintended consequences of your team's brilliance?
Sure, I mean, I think it would—you couldn't be human if you didn't ask those questions.
You know, how do you answer them?
Well, I don't always have answers for them, right? I think that, um, we learn as time goes on. I mean, my job is one of the most exhilarating jobs you can have. I work with some of the most amazing people, and with that exhilaration comes a really deep sense of responsibility.
And so you have, on the one hand, this tremendous lift of what's possible, right? And this tremendous seriousness of what it means.
Regina, that was jaw-dropping. As I say, thank you so much for coming to—thank you!
[Applause]
[Music]