yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Chemistry free response 2f


3m read
·Nov 11, 2024

During the dehydration experiment, Ethan gas and unreacted ethanol passed through the tube into the water. The ethine was quantitatively collected as a gas, but the unreacted ethanol was not. Explain this observation in terms of the intermolecular forces between water and each of the two gases.

Just to be clear what they're talking about, we can go to the original setup that they gave us at the beginning of this problem. What they're saying is that through this, when they warm up the reactants, the catalyst and the ethanol in here, some of that ethanol gets converted into ethine, but not all of it does. In fact, part of this experiment, we saw that we don't have a perfect yield; we have a 60-point-something percent yield.

So you have a combination of ethanol and ethine gas going through this tube. It cools down, then it goes through this water, and they're saying it looks like we're only seeing, or we're primarily seeing, the ethine gas here. How come we're not seeing the ethanol gas?

The reason—and I'll just paraphrase it right now, and then I'll write it down—is that the ethanol gas is much more dissolvable in the water because ethanol is a polar molecule. Water is a polar solvent, so it's going to dissolve much better in water than the ethine, which isn't a polar molecule.

So let me write this down. The ethine will kind of bubble through, while the ethanol can actually dissolve. So let's write this down.

So explain this observation in terms of intermolecular forces between water and each of the two gases. We could write ethanol: ethanol is polar, so it dissolves in water much better than ethine, which is non-polar.

We could say something like this: ethanol and water will have hydrogen bonds. You could even diagram it out if you like. The ethanol is right over here, so you have your oxygen, and then you have your hydrogen, and then you have your C2H5. This side over here is going to be partially negative; this is going to be partially positive. Oxygen is more electronegative than carbon; the difference is less than between oxygen and hydrogen, but this is also going to be partially positive, maybe not as partially positive as on this side right over here.

When you have water molecules, if this is a water molecule right over here with partially positive charges and partially negative charges, you're going to have the hydrogen bonds. So the ethanol is going to dissolve much better.

The ethene isn't polar and will only have induced dipole forces acting on it. Let me write this: ethine is not polar, and so I could say it will only have induced dipole interactions. Maybe I could say dipole because the water is polar.

Even though ethane is a symmetric molecule and has that double bond, it has no net polarity. There are parts of the ethane molecule that are going to be a little bit more negative than others, in particular when you look at the carbons over here. They're a little bit more electronegative than the hydrogens.

So, ethane is not polar, so we'll only have induced dipole, or I guess we could also say just dipole interactions with polar water. This is why ethine won't dissolve as well and bubbles through, while ethanol dissolves. Ethine bubbles through because it doesn't have as strong interactions with the water.

More Articles

View All
General Stanley McChrystal on leadership & navigating complex challenges | Homeroom with Sal
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream. This is a thing we started, well, it seems like a long time ago now, but it was several weeks ago when the school closures happened. Just a way to continue to support…
Tuscaloosa Tornado - Smarter Every Day 7
[Music] [Applause] Hey, it’s me, Destin. Tuscaloosa recently got rocked by a tornado real bad. National Guards in the street, power guys are working hard trying to get power back on, and of course, media, it’s bad. So, my sister was in Tuscaloosa when al…
Local and global scope | Intro to CS - Python | Khan Academy
What do you think happens when I run this program? Does it print zero, four, or raise some kind of error? To find out, let’s explore variable scope. The scope of a variable describes the region of the program where we can access it. When we run this prog…
Let It Go, Ride the Wind | The Taoist Philosophy of Lieh Tzu
The ancient Taoist text Zhuangzi describes Lieh Tzu as the sage who rode the wind with an admirable indifference to external things. Thus, in his lightness, he was free from all desires to pursue the things that supposedly make us happy. Lieh Yokuo, also …
Worked example: rational vs. irrational expressions (unknowns) | High School Math | Khan Academy
We’re told let A and B be rational numbers and let B be non-zero. They had to say let B be non-zero because we’re about to divide by B. Is A over B rational or irrational? Well, let’s think about it. They’re both rational numbers, so that means that A, s…
Badland's Prairie Dogs vs Coyote | America's National Parks | National Geographic
NARRATOR: Badlands National Park, South Dakota, 244,000 acres split into two dramatic worlds, the Rocky Badlands themselves, carved out of the ground by wind and rain, and beyond them, an ancient sea of grass, home to the icons of the Old West. This land …