yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
The Secrets To Setting Smarter Goals
Did you learn calculus and then get GA, or did you cheat and get the A? Like, it’s like you know the answer to that question. Yeah, like the A isn’t the goal; it’s the representation of your knowledge and your mastery. This is Michael Seibel with Dalton …
Teaching Social Studies with Khanmigo
Hi, I’m Michelle, a professional learning specialist here at KH Academy and a former classroom teacher just like you. Meet K Migo, your AI-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many exciting…
Gordon Ramsay Goes Cast Net Fishing in Laos | Gordon Ramsay: Uncharted
First of all, an absolute pleasure because you’ve helped put Lao cuisine on the map. I’m dying to get to understand Lao cuisine. Food not too sweet, but we use lots of stuff that we get from the forest or swimming river. We also use more herbs. Wow, that…
Introducing Khan Academy Learnstorm 2019!
Hello teachers, I’m Sal Khan, founder of the not-for-profit Khan Academy, and I’m here to announce a nationwide back-to-school learning challenge called LearnStorm. LearnStorm is an exciting way to jumpstart your school year around learning activities. I…
2005 Entrepreneurship Conference - Taking on the Challenge: Jeffrey Bezos, Amazon
I want to talk a little bit about how we think about innovation at Amazon.com and, uh, give you a couple of examples from the world. This is the whiffle ball and the guy, his name is David Nelson Malany, and in 1953 he took a Cody perfume package and, ou…
Calculations using Avogadro's number (part 2) | Chemistry | Khan Academy
Let’s solve a few numerical on Avogadro number and moles. Here’s the first one: how many glucose molecules are in 2.37 moles of glucose? Let’s quickly remind ourselves what moles are. Moles are like dozens. Just like how one dozen equals 12, a mole repre…