yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
Ideas, Products, Teams, and Execution with Dustin Moskovitz (How to Start a Startup 2014: Lecture 1)
Welcome! Can I turn this on? Baby, all right. Hit people here. Can you guys hear me? Is the mic on? No? Maybe you can ask them to turn it on. Maybe we can get a big—there we go. All right! Maybe we can get a bigger auditorium; we’ll see. So welcome to CS…
Intro to determinant notation and computation | Matrices | Precalculus | Khan Academy
In this video, we’re going to talk about something called determinants of matrices. So I’ll start just telling you the notation and how do you compute it, and then we’ll think about ways that you can interpret it. So let’s give ourselves a 2 by 2 matrix …
2010 Holiday/Christmas Game Guide: DC Universe Online, Dance Central, Cataclysm, AND MORE!
Hey Jeffrey, did you know the holiday seasons are coming up? Oh my God, really? Really! And you know what that means? Awesome games. Awesome games! This is uh Jeff and his [ __ ] friend Adam. Hey, everybody! We’re going to talk about video games here com…
How to prepare for the next recession…
What’s up, you guys? It’s Graham here. So, it’s hard to ignore that recently there’s been a lot of talk about how we are now overdue for a recession. We have been in one of the longest-running bull markets in history. Stocks are at all-time highs, the Fe…
Introduction to vertex form of a quadratic
It might not be obvious when you look at these three equations, but they’re the exact same equation. They’ve just been algebraically manipulated. They are in different forms. This is the equation and sometimes called standard form for a quadratic. This is…
Khan Kickoff Pep Talk: Akbar Gbajabiamila
Khan Academy students, what’s going on? It’s Akbar Bajabiamila, host of American Ninja Warrior. I just wanted to check in with you guys, but also to wish you a happy new year. It’s 2021. Things are going to be a lot different, and I know in 2020 things g…