yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
Planar motion (with integrals) | Applications of definite integrals | AP Calculus BC | Khan Academy
A particle moving in the xy-plane has a velocity vector given by (v(t)). It just means that the x component of velocity as a function of time is (\frac{1}{t} + 7), and the y component of velocity as a function of time is (t^4) for time (t \geq 0). At (t …
How to be More Confident | 5 Ways to Increase Self-Confidence
[Music] The guy: All right, what’s on the menu? Top five ways to increase confidence. Okay, all right, let’s do this. So, you might be wondering why I’m drinking coffee, even though I’m the guy who made a video about why you should stop drinking coffee o…
Later stages of the Civil War part 2
All right, so we’ve been talking about the later stages of the Civil War. In the last video, we just did a brief overview of the end of 1863, after the North has won the Battle of Gettysburg and Lee has been turned around and sent back down to Richmond, w…
Michael Burry's Controversial Bet for 2024.
Well, Michael Barry is back. He has just released his latest 13F filing, and in it, it shows that he has been on quite the buying spree in Q4 of 2023. He opened 18 new positions, added to two, reduced in five, and sold four. So, in this video, we’re going…
Cancer 101 | National Geographic
[Narrator] Today cancer causes one in every seven deaths worldwide. But how does cancer start, and what is being done to combat it? Our bodies contain trillions of highly specialized cells, and each carries genes responsible for regulating cell growth and…
Exponential functions differentiation intro | Advanced derivatives | AP Calculus AB | Khan Academy
What I want to do in this video is explore taking the derivatives of exponential functions. So we’ve already seen that the derivative with respect to x of e to the x is equal to e to the x, which is a pretty amazing thing. One of the many things that make…