yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
Run-ons and comma splices | Syntax | Khan Academy
Hello Grim, Marians. Hello Rosie. Hi David, how are you? Good, how are you? Good. Today we are going to talk about run-ons and comma splices. A run-on sentence is what happens when two independent clauses are put together in one sentence without any punc…
Q&A + Giveaway for 10 Years on YouTube
As of today, I have been making Youtube videos full-time for 10 years. So, to celebrate, I am answering your questions, plus I’m giving away items like this beautiful spinning top from Vorso and other items from my videos. So, if you want to win one of th…
The Strange—but Necessary—Task of Vaccinating Wild Seals | National Geographic
You’re walking around with a sharp needle on the end of a stick, and you’re walking around rocks and tide pools and some terrain that could be tricky. Then, you’re approaching a 400-plus-pound animal, an endangered species, and you’re going to try to, you…
15 Things Mentally Strong Men Don’t Do
You can tell if a man is mentally strong within a few minutes of meeting him. The way he speaks to you, the way he speaks about other people, and the things he says about himself will immediately let you know if this is a confident, self-assured person th…
Integration using completing the square and the derivative of arctan(x) | Khan Academy
All right, let’s see if we can find the indefinite integral of ( \frac{1}{5x^2 - 30x + 65} \, dx ). Pause this video and see if you can figure it out. All right, so this is going to be an interesting one. It’ll be a little bit hairy, but we’re going to w…
Zeros of polynomials (multiplicity) | Polynomial graphs | Algebra 2 | Khan Academy
All right, now let’s work through this together. And we can see that all of the choices are expressed as a polynomial in factored form. And factored form is useful when we’re thinking about the roots of a polynomial, the x-values that make that polynomi…