yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
Adora Cheung Speaks at Female Founders Conference 2015
Hey everyone, thanks Cat. So as Cat said, I am the CEO and co-founder of Homejoy. Um, woo, yeah, okay, this is going to be easy. Um, so Homejoy is the get help button for every home, and Cat said we connect people with home service professionals in the mo…
LearnStorm Growth Mindset: Khan Academy's economics content creator on learning strategies
My name is Melanie Fox. I create the AP Macroeconomics and AP Microeconomics content for Khan Academy. Well, if you don’t develop that mindset and you say, “I can’t overcome this,” this barrier, you’ve just made that barrier permanent for yourself. For …
How Black Climbers Are Closing the Adventure Gap | Podcast | Overheard at National Geographic
Earlier this year, James Edward Mills did something I’ve always wanted to do. He flew to Nepal and directed the base of Mount Everest. I did uh travel with the team, um from Kathmandu to Lukla. Then we basically walked from Lukla to Everest Base Camp. Wow…
Multivariable functions | Multivariable calculus | Khan Academy
Hello and welcome to multivariable calculus. So I think I should probably start off by addressing the elephant in the living room here. I am sadly not S, but I’m still going to teach you some math. My name is Grant. Um, I’m pretty much a math enthusiast. …
Warren Buffett's BIG bets in JAPAN (w/ @InvestingwithTom)
Hey guys, welcome back to the channel! In this video, we’ve got some big news to cover because news out of Warren Buffett’s company Berkshire Hathaway. They put out a press release a few days ago now, where they said that Berkshire Hathaway has acquired a…
Picture of Everything? -- DONG
This website lets you create a custom message that takes up the entire page. You can then share the custom URL with friends to say something loudly, bigly. But for more things you can do online now, guys, this is DONG. The Sound Walk is like Guitar Hero …