yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
How Does a Transistor Work?
In this phone, there are nearly 100 million transistors; in this computer, there’s over a billion. The transistor is in virtually every electronic device we use: TVs, radios, Tamagotchis. But how does it work? Well, the basic principle is actually incredi…
Relative adverbs | The parts of speech | Grammar | Khan Academy
Hey Grians! Today we’re going to talk about three of the relative adverbs in English, which are where, when, and why. And this over here is Peggy the Dragon. We’re going to use the story of Peggy the Dragon in order to figure out how to use these relative…
Naming two isobutyl groups systematically | Organic chemistry | Khan Academy
In the last video, we named this molecule using the common names for this group right over here, and I thought it would be fun to also use to do the same thing, but use the systematic name. So, in the last video, we called this isobu, but if we wanted to …
THE ONLY 5 CREDIT CARDS YOU WILL EVER NEED
What’s up, you guys? It’s Graham here. So, as some of you know, I have this weird fascination with credit cards and try to squeeze out the best rewards as possible. However, I realized that picking and choosing new credit cards every single month based o…
Khan Academy Ed Talks with Kristi Yamaguchi - Thursday, March 3
Hello! Welcome to Khan Academy Ed Talks. I am Caroline Hu Flexer, the CEO and co-founder of Khan Academy Kids, which is a mobile app for children ages two through eight that’s focused on literacy, math, and social-emotional learning. Today, we are celebr…
Sarah Chou on Finding Product-Market Fit in the Education Industry - at YC Edtech Night
Hi everyone! Really, really nice to meet you. It’s so exciting to see—I mean, yeah, this is a lot of companies. This is really exciting. So, I am the CEO and co-founder of Informed K12. We did recently go through a name change, so we were formerly Chalk S…