yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

One-sided limits from graphs: asymptote | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So over here we have the graph of y is equal to G of x. What I want to do is figure out the limit of G of x as x approaches positive 6 from values that are less than positive 6, or you could say from the left, from the negative direction. So what is this going to be equal to? If you have a sense of it, pause the video and give a go at it.

Well, to think about this, let's just approach, let's just take different x values that approach six from the left and look at what the values of the function are.

So G of 2 looks like it's a little bit more than 1. G of 3, it's a little bit more than that. G of 4 looks like it's a little under 2. G of 5, it looks like it's around 3. G of 5.5 looks like it's around 5. G of, let's say, 5.75 looks like it's like 9.

As x gets closer and closer to 6 from the left, it looks like the value of our function just becomes unbounded. It's just getting infinitely large. In some contexts, you might see someone write that maybe this is equal to infinity, but infinity isn't a specific number.

If we're talking technically about limits the way that we've looked at it, you'll sometimes see this in some classes, but in this context, especially on the exercises on Khan Academy, we'll say that this does not exist.

This thing right over here is unbounded, and this is interesting because the left-handed limit here doesn't exist, but the right-handed limit does. If I were to say the limit of G of x as x approaches 6 from the right-hand side, well, let's see.

We have G of 8, is there. G of 5 is there. G of 6.5 looks like it's a little less than -3. G of 6.01, a little even closer to -3. G of 60000000000, it's very close to -3.

So it looks like this limit right over here, at least looking at it graphically, looks like when we approach 6 from the right, the function is approaching -3. But from the left, it's just unbounded. So we'll say it doesn't exist.

More Articles

View All
The Power of Suggestion
[dramatic music playing] [Michael] This is McGill University in Montreal, Canada. It boasts an enrollment of more than 40,000 students from 150 countries. The campus employs 1,700 professors teaching 300 programs of study, and it’s proud to be home to 12…
Meru: Filming the Epic Climb | Nat Geo Live
We called this talk “The Making of Meru” to try to give you guys some insight on how a story like this, you know, a climb like this of rather epic, historic proportions can be translated into a film for a general audience that may have absolutely no knowl…
Khanmigo Teacher Story - Ms. Bartsch
What I love most about using Conmigo is it gives me the agency as a teacher to be able to kind of set parameters for my classroom while still giving my students exposure to the AI that’s going to be a huge part of the world that they’re heading towards af…
Charitable giving | Financial goals | Financial Literacy | Khan Academy
So let’s talk a little bit about charitable giving, and this one is close to my heart because I run a non-profit. Why do folks donate to charity? Well, you might have your own motivations. For most folks, I think it just feels good. They might feel that …
Anti-Federalists and Brutus No. 1 | US government and civics | Khan Academy
You first learn about American history; it sometimes seems like it might have been a very easy or somewhat obvious transition from the Articles of Confederation to the Constitution, but it was not. It was a very vigorous debate. As we’ve talked about in p…
How to Solve Money Disputes Like a Multi-Millionaire | Shark Tank's Kevin O'Leary
Hi there, Mr. Wonderful here. There’s nothing more stressful than a money dispute, whether it’s with a business partner or a family member, and in these extraordinary times, the stakes are higher than ever. But you know what? You don’t need that stress. Y…