yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals of sin(mx) and cos(mx)


3m read
·Nov 11, 2024

In the last video, we introduced the idea that we could represent any arbitrary periodic function by a series of weighted cosines and sines. What I'm going to start doing in this video is establishing our mathematical foundation, so it'll be pretty straightforward for us to find these coefficients that give us that function.

The first thing I want to do, the first thing I'm going to do, is establish some truths using definite integrals. I'm going to focus over the interval 0 to 2π over this video and the next few videos because the function we're approximating has a period of 2π; it completes one cycle from 0 to 2π. We could have done it over other intervals of length 2π, and if this period was other than 2π, we would have done it over intervals of that period. But I'm focusing on 2π because it makes the math a little bit cleaner and a little bit simpler, and then we can generalize in the future.

So let's just establish some things about definite integrals of trigonometric functions. The first thing I want to establish is that the definite integral from 0 to 2π of sin(Mt) dt is equal to zero for any non-zero integer M. I also want to establish that the integral from 0 to 2π of cos(Mt) dt is equal to zero for any non-zero integer M. You might already take this for granted or feel good about it or have already proven it to yourself, and if so, you could actually skip this video. But let's work through it because it's actually a good review of some integral calculus here.

So let's first do this top one. Let me just rewrite the integral. We're going to take the integral from 0 to 2π of sin(Mt) dt. Now, we know we want to take the anti-derivative of sin(Mt). We know that the derivative with respect to t of cos(Mt) is equal to M times the derivative of Mt with respect to t times the derivative of cos(Mt) with respect to Mt. So this is going to be equal to -M sin(Mt).

I could put a parenthesis there if I like, and so I almost have negative M sin(Mt). I just don't have a negative M here. So, what if I put a negative M there? But I can't just do that; that would change the value of the expression. But I could also multiply by -1/M. Now, these two would, if we take the product, cancel out, and we're going to get our original expression.

But this is useful because now we can say this is equal to -1/M. Now the anti-derivative of this business right over here we know is cos(Mt), so it’s going to be cos(Mt) evaluated at 2π and 0. This is going to be equal to -1/M times (cos(M * 2π) - cos(0)).

Let's see, cos of any multiple of 2π is just going to be 1, and cos(0) is also one. So you have 1 - 1, which is 0 times -1/M. Well, this is all going to evaluate to—we have just proven that first statement.

Now let's prove the second one. It's going to be a very similar argument. So let's rewrite it. We’re going to get the integral from 0 to 2π of cos(Mt) dt. Now, let me engineer this a little bit. We know that the derivative of sin(Mt) is M cos(Mt), so let me multiply and divide by M.

I'm going to multiply by an M and divide by an M—not changing the actual value. This is going to be equal to 1/M, and then the anti-derivative of that right over there is sin(Mt). Notice the derivative of sin(Mt) is M cos(Mt).

We're going to evaluate that from 0 to 2π. So this is going to be equal to—we still have our 1/M out front. 1/M times (sin(M * 2π) - sin(0)). So, what's the sin of any multiple of 2π? Remember M is a non-zero integer, so any multiple is going to be zero.

And sin(0) is just going to be zero. So this whole thing is just going to be zero. We have established our second statement there. This is going to be a nice base to build from. Now we're going to do slightly more complex integrals in the next few videos. So that's going to be, hopefully, pretty straightforward to find our Fourier coefficients with a little bit of calculus and algebraic manipulation.

More Articles

View All
The Real Problem With AI ✨
Evil artificial intelligence might try to take over the world. You shouldn’t trust anything it says. Well, first, the AI would attempt to gain access to as many technological systems as possible. Then, it would study us, gathering data and identifying our…
BEST of MARGIN CALL #4 - Senior Partners Emergency Meeting
Please, sit down. Welcome, everyone. I must apologize for dragging you all here at such an uncommon hour. But from what I’ve been told, this matter needs to be dealt with urgently. So urgently, in fact, it probably should have been addressed weeks ago. Bu…
10 Misleading Money Facts
Everyone loves some good money advice, right? But most of it is either misleading, vague, or not correlated to the real world. So, here’s our picks of the most misleading money advice out there. Welcome to a Lux! First up, “investing will make you rich.”…
This Worm Uses a "Silly String of Death" | National Geographic
[Music] In the rainforest, one sharpshooter is in search of its next target. Meet the velvet worm, a nearly blind creature with an impressive weapon. The worm is sensitive to air currents caused by movements and uses this to hunt. The velvet worm moves …
How to Achieve Any GOAL
Everyone wants to be rich, happy, healthy, have amazing friends, and a beautiful family. Most people think that in order to get all of them, you need to get lucky. Well, most people are wrong. Okay? And you are not like most people. Welcome to Alux, the …
The Harsh Bottom of the World | Continent 7: Antarctica
I think it’s important for people to know about what’s happening in Antarctica, not only just that the science that goes on down there, but what that science is actually trying to tell us about the future of this planet. Most of the research is really foc…