yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to perform brain surgery without making a single cut - Hyunsoo Joshua No


3m read
·Nov 8, 2024

Every year, tens of thousands of people world-wide have brain surgery without a single incision: there’s no scalpel, no operating table, and the patient loses no blood. Instead, this procedure takes place in a shielded room with a large machine that emits invisible beams of light at a precise target inside the brain. This treatment is called stereotactic radiosurgery, and those light beams are beams of radiation: their task is to destroy tumors by gradually scrubbing away malignant cells.

For patients, the process begins with a CT-scan, a series of x-rays that produce a three-dimensional map of the head. This reveals the precise location, size, and shape of the tumor within. The CT-scans also help to calculate something called "Hounsfield Units," which show the densities of different tissues. This offers information about how radiation will propagate through the brain, to better optimize its effects. Doctors might also use magnetic resonance imaging, or MRI’s, that produce finer images of soft tissue, to assist in better outlining a tumor’s shape and location.

Mapping its precise position and size is crucial because of the high doses of radiation needed to treat tumors. Radiosurgery depends on the use of multiple beams. Individually, each delivers a low dose of radiation. But, like several stage lights converging on the same point to create a bright and inescapable spotlight, when combined, the rays of radiation collectively produce enough power to destroy tumors.

In addition to enabling doctors to target tumors in the brain while leaving the surrounding healthy tissue relatively unharmed, the use of multiple beams also gives doctors flexibility. They can optimize the best angles and routes through brain tissue to reach the target and adjust the intensity within each beam as necessary. This helps spare critical structures within the brain. But what exactly does this ingenious approach do to the tumors in question?

When several beams of radiation intersect to strike a mass of cancerous cells, their combined force essentially shears the cells’ DNA, causing a breakdown in the cells’ structure. Over time, this process cascades into destroying the whole tumor. Indirectly, the rays also damage the area immediately surrounding the DNA, creating unstable particles called free radicals. This generates a hazardous microenvironment that’s inhospitable to the tumor, as well as some healthy cells in the immediate vicinity.

The risk of harming non-cancerous tissue is reduced by keeping the radiation beam coverage as close to the exact shape of the tumor as possible. Once radiosurgery treatment has destroyed the tumor’s cells, the body’s natural cleaning mechanism kicks in. The immune system rapidly sweeps up the husks of dead cells to flush them out of the body, while other cells transform into scar tissue.

Despite its innovations, radiosurgery isn’t always the primary choice for all brain cancer treatments. For starters, it’s typically reserved for smaller tumors. Radiation also has a cumulative effect, meaning that earlier doses can overlap with those delivered later on. So patients with recurrent tumors may have limitations with future radiosurgery treatments.

But these disadvantages weigh up against some much larger benefits. For several types of brain tumors, radiosurgery can be as successful as traditional brain surgery at destroying cancerous cells. In tumors called meningiomas, recurrence is found to be equal, or lower, when the patient undergoes radiosurgery. And compared to traditional surgery— often a painful experience with a long recovery period— radiosurgery is generally pain-free, and often requires little to no recovery time.

Brain tumors aren’t the only target for this type of treatment: its concepts have been put to use on tumors of the lungs, liver, and pancreas. Meanwhile, doctors are experimenting with using it to treat conditions such as Parkinson’s disease, epilepsy, and obsessive compulsive disorder. The pain of a cancer diagnosis can be devastating, but advancements in these non-invasive procedures are paving a pathway for a more gentle cure.

More Articles

View All
Why you're unmotivated and how to get motivated?📚🧑🏻‍💻
Do you sometimes be like, “Oh man, I don’t have any motivation. I really need to motivate myself to do blah blah task?” I used to think I needed motivation to do something as well, but I was wrong. Motivation is overhyped, and I’m going to explain you why…
Mr. Freeman, part 64
Ooops! Uh… Close the door! Get all of the young children out of here, and put your hands where I can see them! Do it! Today I’m going to tell you about a joyful and pleasant pastime, a piece of pocket-size happiness for anyone, a path to pure pleasure th…
Truth Serums and False Confessions
[Music] How do you get information from someone who wants to keep it from you? Somewhere locked inside their brain could be the truth about a crime, or the plan for a terrorist attack, or the password to a bank account, or nuclear codes. To get informatio…
Solving square-root equations: two solutions | Mathematics III | High School Math | Khan Academy
Let’s say that we have the equation ( 6 + 3w = \sqrt{2w + 12} + 2w ). See if you can pause the video and solve for ( w ), and it might have more than one solution, so keep that in mind. All right, now let’s work through this together. The first thing I’…
Trapped in the icy waters of the Northwest Passage | Podcast | Overheard at National Geographic
Foreign, so look, I know we’re going to get into the whole journey, but let’s start with tell me about the moment on this journey when you felt the most scared. Okay, that’s a good one. [Laughter] Um, this is Mark Senate. He’s a long-time National Geogra…
No More Gas | The Worst Energy Crisis In 40 Years
The U.S. is facing a diesel shortage. The price of diesel has been soaring for months. In 25 days from now, there will be no more diesel, up 27 and 28 percent. It’s a very, very high bill. “What’s up guys, it’s Graham here.” So, in 1973, the United State…