yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: identifying separable equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Which of the differential equations are separable? I encourage you to pause this video and see which of these are actually separable.

Now, the way that I approach this is I try to solve for the derivative. If when I solve for the derivative, I get ( \frac{dy}{dx} = g(y) \cdot h(x) ), then I say, "Okay, this is separable," because I could rewrite this as I could divide both sides by ( g(y) ) and I get ( \frac{1}{g(y)} , dy = h(x) , dx ). You would go from this first equation to the second equation just by dividing both sides by ( g(y) ) and multiplying both sides by ( dx ). Then it's clear you have a separable equation; you can integrate both sides.

But the key is, let's solve for the derivative and see if we can put this in a form where we have the product of a function of ( y ) times a function of ( x ). So, let's do it with this first one here.

So, let's see if I subtract ( y ) from both sides. I'm just trying to solve for the derivative of ( y ) with respect to ( x ). I'm going to get ( x \cdot y' ) (where ( y' ) is the derivative of ( y ) with respect to ( x )) is equal to ( 3 - y ). So, I subtracted ( y ) from both sides.

Let's see; if I divide both sides by ( x ), I'm going to get ( y' = \frac{3 - y}{x} ). So, it's clear I'm able to write the derivative as the product of a function of ( y ) and a function of ( x ). So, this indeed is separable. I can show you: I can multiply both sides by ( dx ) and divide both sides by ( 3 - y ) now, and I would get ( \frac{1}{3 - y} , dy = \frac{1}{x} , dx ). So, clearly, this one right over here is separable.

Now, let's do the second one, and I'm going to just do the same technique. I'll do it in a slightly different color so we don't get all of our math jumbled together.

So in this second one, let's see if I subtract ( 2x + 2y ) from both sides. Actually, let me just do—oops, let me do a couple things at once. I'm going to subtract ( 2x ) from both sides. I am going to subtract ( 2y ) from both sides. So I'm going to subtract ( 2y ) from both sides. I'm going to add one to both sides. So I'm going to add ( 1 ) to both sides.

And then what am I going to get? If I do that, this is going to be zero; this is going to be zero; this is going to be zero. I'm going to have ( 2 \cdot \frac{dy}{dx} = -2x - 2y + 1 ).

Now, let's see. I can divide everything by ( 2 ). I would get ( \frac{dy}{dx} = \frac{-2x - 2y + 1}{2} ). Actually, yeah, I would get—I'm just going to divide by ( 2 ), so I'm going to get ( \frac{dy}{dx} = -x - y + \frac{1}{2} ).

So, it's not obvious to me how I can write this as a product of a function of ( x ) and a function of ( y ). So, this one does not feel—this one right over here is not separable. I don't know how to write this as a function of ( x ) times a function of ( y ), so this one I’m not going to say is separable.

Now this one, they've already written it for us as a function of ( x ) times a function of ( y ), so this one is clearly separable right over here. And if you want me to do the separating, I can rewrite this as well. This is ( \frac{dy}{dx} ). If I multiply both sides by ( dx ) and divide both sides by this right over here, I would get ( \frac{1}{y^2 + y} , dy = (x^2 + x) , dx ). So, clearly separable.

Alright, now this last choice, this is interesting. They've essentially distributed the derivative right over here. So, let's see if we were to unfactor the derivative. I'm just going to solve for ( \frac{dy}{dx} ). So, I'm going to factor it out. I'm going to get ( \frac{dy}{dx} \cdot (x + y) = x ).

Now, if I were to divide both sides by ( x + y ), I'm going to get ( \frac{dy}{dx} = \frac{x}{x + y} ). Here, my algebraic toolkit of how do I separate ( x ) and ( y ); I can write this as a function of ( x ) times a function of ( y )—not obvious to me here, so this one is not separable.

So, only the first one and the third one are separable.

More Articles

View All
Infiltrating the Illegal Wildlife Trade: The Human Cost | Nat Geo Live
In East Africa, ivory trafficking is probably what you might guess. It’s organized crime, it’s poachers on the ground, corrupt governments. Central Africa; completely different. It’s a war zone. These are the rangers. These six men are dead. They were on…
Day In The Life of a Millennial Millionaire
What’s up guys, it’s Graham here! So this is a video that I’ve been meaning to make for over two years now because so many of you guys have asked me to film a day in the lifestyle vlog. Well, I guess now is the perfect time to film that video because with…
Jim Crow part 1 | The Gilded Age (1865-1898) | US History | Khan Academy
In this video, I want to talk about the system of Jim Crow segregation, which was common in the United States from about 1877 to approximately 1954, although it goes a little bit further than that. Now, you’re probably familiar with some of the aspects of…
How to Apply And Succeed at Y Combinator | Startup School
[Music] Hey everybody, this is Dalton. I am excited to talk to you today. The topic of today’s talk is how to apply and succeed at Y Combinator. To begin with, let’s talk about why it’s worth applying to Y Combinator. It’s a good idea to sit down and th…
Success is a 5 Step Process
If you want to succeed, understand the five-step process. What I mean by the five-step process is first, you need to know your goals. That means you need to prioritize and find out what do you really want and what are you going after. On the journey to t…
Start Your Watch Collection | What You Should Consider Before Purchasing
I guess we should start with Dubai Watch Week. I just watched your panel discussion, and I think a lot of people would be surprised to see high tech being matched with watchmaking. Do you think people are surprised by that? Well, I think it’s high time c…