yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: identifying separable equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Which of the differential equations are separable? I encourage you to pause this video and see which of these are actually separable.

Now, the way that I approach this is I try to solve for the derivative. If when I solve for the derivative, I get ( \frac{dy}{dx} = g(y) \cdot h(x) ), then I say, "Okay, this is separable," because I could rewrite this as I could divide both sides by ( g(y) ) and I get ( \frac{1}{g(y)} , dy = h(x) , dx ). You would go from this first equation to the second equation just by dividing both sides by ( g(y) ) and multiplying both sides by ( dx ). Then it's clear you have a separable equation; you can integrate both sides.

But the key is, let's solve for the derivative and see if we can put this in a form where we have the product of a function of ( y ) times a function of ( x ). So, let's do it with this first one here.

So, let's see if I subtract ( y ) from both sides. I'm just trying to solve for the derivative of ( y ) with respect to ( x ). I'm going to get ( x \cdot y' ) (where ( y' ) is the derivative of ( y ) with respect to ( x )) is equal to ( 3 - y ). So, I subtracted ( y ) from both sides.

Let's see; if I divide both sides by ( x ), I'm going to get ( y' = \frac{3 - y}{x} ). So, it's clear I'm able to write the derivative as the product of a function of ( y ) and a function of ( x ). So, this indeed is separable. I can show you: I can multiply both sides by ( dx ) and divide both sides by ( 3 - y ) now, and I would get ( \frac{1}{3 - y} , dy = \frac{1}{x} , dx ). So, clearly, this one right over here is separable.

Now, let's do the second one, and I'm going to just do the same technique. I'll do it in a slightly different color so we don't get all of our math jumbled together.

So in this second one, let's see if I subtract ( 2x + 2y ) from both sides. Actually, let me just do—oops, let me do a couple things at once. I'm going to subtract ( 2x ) from both sides. I am going to subtract ( 2y ) from both sides. So I'm going to subtract ( 2y ) from both sides. I'm going to add one to both sides. So I'm going to add ( 1 ) to both sides.

And then what am I going to get? If I do that, this is going to be zero; this is going to be zero; this is going to be zero. I'm going to have ( 2 \cdot \frac{dy}{dx} = -2x - 2y + 1 ).

Now, let's see. I can divide everything by ( 2 ). I would get ( \frac{dy}{dx} = \frac{-2x - 2y + 1}{2} ). Actually, yeah, I would get—I'm just going to divide by ( 2 ), so I'm going to get ( \frac{dy}{dx} = -x - y + \frac{1}{2} ).

So, it's not obvious to me how I can write this as a product of a function of ( x ) and a function of ( y ). So, this one does not feel—this one right over here is not separable. I don't know how to write this as a function of ( x ) times a function of ( y ), so this one I’m not going to say is separable.

Now this one, they've already written it for us as a function of ( x ) times a function of ( y ), so this one is clearly separable right over here. And if you want me to do the separating, I can rewrite this as well. This is ( \frac{dy}{dx} ). If I multiply both sides by ( dx ) and divide both sides by this right over here, I would get ( \frac{1}{y^2 + y} , dy = (x^2 + x) , dx ). So, clearly separable.

Alright, now this last choice, this is interesting. They've essentially distributed the derivative right over here. So, let's see if we were to unfactor the derivative. I'm just going to solve for ( \frac{dy}{dx} ). So, I'm going to factor it out. I'm going to get ( \frac{dy}{dx} \cdot (x + y) = x ).

Now, if I were to divide both sides by ( x + y ), I'm going to get ( \frac{dy}{dx} = \frac{x}{x + y} ). Here, my algebraic toolkit of how do I separate ( x ) and ( y ); I can write this as a function of ( x ) times a function of ( y )—not obvious to me here, so this one is not separable.

So, only the first one and the third one are separable.

More Articles

View All
Charlie Munger: How to Get Rich Starting at $0
Sew a lot of videos out there claim they will help make you rich, but these five wealth building principles from Charlie Munger actually will. When you type in the words “how to get rich” in YouTube or in the Google search bar, you get flooded with all so…
The Next Market Crash - 7 Ways To Make Money
What’s up, you guys? It’s Graham here. So I feel like it’s time we address something that probably a lot of us have recently considered, and that would be the next stock market crash. After all, in the last week, the stock market has risen to brand new re…
Homeroom with Sal & Laurie Santos, PhD - Thursday, October 15
Hi everyone! Sal here. Welcome to the Homeroom live stream. We have a very exciting guest today, Lori Santos, professor at Yale University, who teaches a class called Psychology and the Good Life. So, it’s going to be a really interesting conversation. I …
Renewable and Nonrenewable Energy Resources | AP Environmental Science | Khan Academy
Today, let’s talk about energy resources. You’ve probably already done something today that used energy resources, even beginning from the moment you woke up. For me, the beginning of my day always starts with making tea. I use energy in every step of thi…
How to Set Goals: My goals for 2018 ($1 Million in income)
So guys, if you want to achieve something, it’s not just gonna randomly happen to you. It’s not just gonna fall from the sky onto your lap and like, “Oh, whoops, there it is!” That’s not gonna happen. In order to get something, you really have to want wha…
Climbing the Polar Bear Fang | Nat Geo Live
( intro music ) Mike Libecki: Sixty-five expeditions and counting and the goal is to do 100 expeditions by 100 years old. This is what I call the Polar Bear Fang. And I’ve been trying to this tower for ten years. For a climber, this is as good as it gets…