yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: identifying separable equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Which of the differential equations are separable? I encourage you to pause this video and see which of these are actually separable.

Now, the way that I approach this is I try to solve for the derivative. If when I solve for the derivative, I get ( \frac{dy}{dx} = g(y) \cdot h(x) ), then I say, "Okay, this is separable," because I could rewrite this as I could divide both sides by ( g(y) ) and I get ( \frac{1}{g(y)} , dy = h(x) , dx ). You would go from this first equation to the second equation just by dividing both sides by ( g(y) ) and multiplying both sides by ( dx ). Then it's clear you have a separable equation; you can integrate both sides.

But the key is, let's solve for the derivative and see if we can put this in a form where we have the product of a function of ( y ) times a function of ( x ). So, let's do it with this first one here.

So, let's see if I subtract ( y ) from both sides. I'm just trying to solve for the derivative of ( y ) with respect to ( x ). I'm going to get ( x \cdot y' ) (where ( y' ) is the derivative of ( y ) with respect to ( x )) is equal to ( 3 - y ). So, I subtracted ( y ) from both sides.

Let's see; if I divide both sides by ( x ), I'm going to get ( y' = \frac{3 - y}{x} ). So, it's clear I'm able to write the derivative as the product of a function of ( y ) and a function of ( x ). So, this indeed is separable. I can show you: I can multiply both sides by ( dx ) and divide both sides by ( 3 - y ) now, and I would get ( \frac{1}{3 - y} , dy = \frac{1}{x} , dx ). So, clearly, this one right over here is separable.

Now, let's do the second one, and I'm going to just do the same technique. I'll do it in a slightly different color so we don't get all of our math jumbled together.

So in this second one, let's see if I subtract ( 2x + 2y ) from both sides. Actually, let me just do—oops, let me do a couple things at once. I'm going to subtract ( 2x ) from both sides. I am going to subtract ( 2y ) from both sides. So I'm going to subtract ( 2y ) from both sides. I'm going to add one to both sides. So I'm going to add ( 1 ) to both sides.

And then what am I going to get? If I do that, this is going to be zero; this is going to be zero; this is going to be zero. I'm going to have ( 2 \cdot \frac{dy}{dx} = -2x - 2y + 1 ).

Now, let's see. I can divide everything by ( 2 ). I would get ( \frac{dy}{dx} = \frac{-2x - 2y + 1}{2} ). Actually, yeah, I would get—I'm just going to divide by ( 2 ), so I'm going to get ( \frac{dy}{dx} = -x - y + \frac{1}{2} ).

So, it's not obvious to me how I can write this as a product of a function of ( x ) and a function of ( y ). So, this one does not feel—this one right over here is not separable. I don't know how to write this as a function of ( x ) times a function of ( y ), so this one I’m not going to say is separable.

Now this one, they've already written it for us as a function of ( x ) times a function of ( y ), so this one is clearly separable right over here. And if you want me to do the separating, I can rewrite this as well. This is ( \frac{dy}{dx} ). If I multiply both sides by ( dx ) and divide both sides by this right over here, I would get ( \frac{1}{y^2 + y} , dy = (x^2 + x) , dx ). So, clearly separable.

Alright, now this last choice, this is interesting. They've essentially distributed the derivative right over here. So, let's see if we were to unfactor the derivative. I'm just going to solve for ( \frac{dy}{dx} ). So, I'm going to factor it out. I'm going to get ( \frac{dy}{dx} \cdot (x + y) = x ).

Now, if I were to divide both sides by ( x + y ), I'm going to get ( \frac{dy}{dx} = \frac{x}{x + y} ). Here, my algebraic toolkit of how do I separate ( x ) and ( y ); I can write this as a function of ( x ) times a function of ( y )—not obvious to me here, so this one is not separable.

So, only the first one and the third one are separable.

More Articles

View All
The Future of Artificial Intelligence | StarTalk
I think for a lot of people, the word robot conjures up a humanoid robot. I think that’s a little bit different. I try to disavow people of that, because human body—why does nothing—why? Right, we can do that stuff. We’re not some model of anything, right…
Finding inverse functions: radical | Mathematics III | High School Math | Khan Academy
[Voiceover] So we’re told that h of x is equal to the negative cube root of three x minus six plus 12. And what we wanna figure out is, what is the inverse of h? So what is… What is h inverse of x going to be equal to? And like always, pause the video and…
Supreme Court BANS Faithless Electors…………?
Hello Internet. Time for a quick update regarding everyone’s favorite voting system: The Electoral College. America’s… idiosyncratic method of picking her president. It’s been unchanged (mostly) for centuries, but this video exists because, in July 2020, …
how to ACTUALLY stop wasting time on social media
Another day went by, and you spent your whole day scrolling on social media while laying on your bed. You might look back and think, “What did I do today?” Most of us have projects and some activities that we would like to do someday, but for some reason,…
Is Organic Really Better? Healthy Food or Trendy Scam?
Over the last few years, organic food has spread like wildfire. Despite higher prices, buying organic is turning from an alternative into a moral and social responsibility. Organic food is supposedly healthier, more natural, and more ethical. But what do …
Alex Honnold Rappels The Moulin | Arctic Ascent with Alex Honnold | National Geographic
[Alex] Deep enough that it just turns black. [Heidi] Yeah. [Alex] Yeah, it’s pretty far. [Heidi] This huge hole is called a moulin. It acts like a drain, funneling meltwater to the base of the glacier. This is the abyss; it’s all pretty big and pretty int…