yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying monomials | Polynomial arithmetic | Algebra 2 | Khan Academy


2m read
·Nov 10, 2024

Let's say that we wanted to multiply 5x squared, and I'll do this in purple: 3x to the fifth. What would this equal? Pause this video and see if you can reason through that a little bit.

All right, now let's work through this together. Really, all we're going to do is use properties of multiplication and use properties of exponents to essentially rewrite this expression. We can just view this as 5 times x squared times 3 times x to the 5th, or we could multiply our 5 and 3 first.

So you could view this as 5 times 3 times x squared times x to the fifth. Now, what is 5 times 3? I think you know that that is 15. Now, what is x squared times x to the fifth? Some of you might recognize that exponent properties would come into play here. If I'm multiplying two things like this, we have the same base and different exponents.

This is going to be equal to x to the, and we add these two exponents: x to the 2 plus 5 power, or x to the seventh power. If what I just did seems counterintuitive to you, I'll just remind you: what is x squared? x squared is x times x, and what is x to the fifth? That is x times x times x times x times x.

If you multiply them all together, what do you get? Well, you got seven x's, and you're multiplying them all together. That is x to the seventh. And so, there you have it: 5x squared times 3x to the fifth is 15x to the seventh power.

So the key is, look at these coefficients. Look at these numbers: the five and the three. Multiply those, and then for any variable you have, if you have x here, so you have a common base, then you can add those exponents. What we just did is known as multiplying monomials, which sounds very fancy.

But this is a monomial. Monomial! And in the future, we'll do multiplying things like polynomials, where we have multiple of these things added together. But that's all it is: multiplying monomials.

Let's do one more example, and let's use a different variable this time just to get some variety in there. Let's say we want to multiply the monomial 3t to the seventh power times another monomial: negative 4t. Pause this video and see if you can work through that.

All right, so I'm going to do this one a little bit faster. I'm going to look at the 3 and the negative 4, and I'm going to multiply those first, and I'm going to get a negative 12.

Then, if I were to want to multiply the t to the seventh times t, once again, they're both the variable t, which is our base. So that's going to be t to the seventh times t to the first power. That's what t is. That's going to be t to the seven plus one power, or t to the eighth.

But there you go! We are done again. We've just multiplied another set of monomials.

More Articles

View All
Introduction to division with partial quotients
In this video, we want to compute what 833 divided by seven is. So, I encourage you to pause this video and see if you can figure that out on your own. All right, now let’s work through it together. You might have appreciated this is a little bit more di…
Messages For The Future
Hey, Vsauce. Michael here. This is Earth as seen from Saturn. That is us right there. And if you look closely, okay, see this little protuberance? That’s the Moon. This image was taken by the Cassini spacecraft on July 19th, 2013, at 21:27 Coordinated Uni…
Safari Live - Day 296 | National Geographic
[Music] This program features live coverage of an African safari and may include animal kills and carcasses. Viewers, good afternoon! Everybody, I’m whisper shouting at you in excitement because for the very first time on Safari Live, there are the new a…
How To Become The World's First Trillionaire
Everyone is looking to make a quick buck. Whether it be a group of kids running a lemonade stand or a multi-billion dollar company making new cutting-edge technology, everyone wants to be rich. To be among the ranks of Bill Gates, Warren Buffett, Mark Zuc…
ROBINHOOD STRIKES BACK - THEIR RESPONSE!
Well, ladies and gentlemen, it happened. Amid all the controversy surrounding the recent $0 trade announcement started by the internet bully Charles Schwab, Robin Hood just seemed like it was destined for loss with no competitive advantage whatsoever. Tha…
See the Extreme Ice Changes Near the Antarctic Peninsula | Short Film Showcase
[Music] We’re here for a 3-week expedition to deploy some time-lapse cameras on the Antarctic Peninsula and on South [Music] Georgia. We’ve already told a powerful story of what’s going on way up North. I’ve always wanted to tell the story of what’s going…