yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying monomials | Polynomial arithmetic | Algebra 2 | Khan Academy


2m read
·Nov 10, 2024

Let's say that we wanted to multiply 5x squared, and I'll do this in purple: 3x to the fifth. What would this equal? Pause this video and see if you can reason through that a little bit.

All right, now let's work through this together. Really, all we're going to do is use properties of multiplication and use properties of exponents to essentially rewrite this expression. We can just view this as 5 times x squared times 3 times x to the 5th, or we could multiply our 5 and 3 first.

So you could view this as 5 times 3 times x squared times x to the fifth. Now, what is 5 times 3? I think you know that that is 15. Now, what is x squared times x to the fifth? Some of you might recognize that exponent properties would come into play here. If I'm multiplying two things like this, we have the same base and different exponents.

This is going to be equal to x to the, and we add these two exponents: x to the 2 plus 5 power, or x to the seventh power. If what I just did seems counterintuitive to you, I'll just remind you: what is x squared? x squared is x times x, and what is x to the fifth? That is x times x times x times x times x.

If you multiply them all together, what do you get? Well, you got seven x's, and you're multiplying them all together. That is x to the seventh. And so, there you have it: 5x squared times 3x to the fifth is 15x to the seventh power.

So the key is, look at these coefficients. Look at these numbers: the five and the three. Multiply those, and then for any variable you have, if you have x here, so you have a common base, then you can add those exponents. What we just did is known as multiplying monomials, which sounds very fancy.

But this is a monomial. Monomial! And in the future, we'll do multiplying things like polynomials, where we have multiple of these things added together. But that's all it is: multiplying monomials.

Let's do one more example, and let's use a different variable this time just to get some variety in there. Let's say we want to multiply the monomial 3t to the seventh power times another monomial: negative 4t. Pause this video and see if you can work through that.

All right, so I'm going to do this one a little bit faster. I'm going to look at the 3 and the negative 4, and I'm going to multiply those first, and I'm going to get a negative 12.

Then, if I were to want to multiply the t to the seventh times t, once again, they're both the variable t, which is our base. So that's going to be t to the seventh times t to the first power. That's what t is. That's going to be t to the seven plus one power, or t to the eighth.

But there you go! We are done again. We've just multiplied another set of monomials.

More Articles

View All
Financial Tips for Millennials: Part 2
The second thing is how do I save? Well, what should I put my saving in? When thinking about what you should put your saving in, realize that the least risk investment, the one you think is the least risk investment, which is cash, is the worst investmen…
The elements of a story | Reading | Khan Academy
Hello readers! I’m going to draw you a map right now, and it’s going to look like I’ve drawn a mountain. But it’s not a map of a mountain; it’s a map of a story. What you’re saying: how do you map a story? What makes a story pointy? These are great quest…
What Can You Do Without a Brain?
Hey, Vsauce. Michael here. And subscribing to Vsauce is a no-brainer, or is it? I mean, you would need your brain to understand the words that I was speaking, and you would need your brain to decide whether or not you liked what you were hearing. You wou…
Checks on the judicial branch | US government and civics | Khan Academy
In other videos, we have talked about how the other branches of government can limit Supreme Court powers. We’re going to continue that conversation in this video by discussing how the amendment process can also limit or overrule a Supreme Court decision.…
Extraneous solutions of radical equations (example 2) | High School Math | Khan Academy
We’re asked which value for D we see D in this equation here makes x = -3 an extraneous solution for this radical equation. √(3x + 25) is equal to D + 2x, and I encourage you to pause the video and try to think about it on your own before we work through …
Alexander the Great takes power | World History | Khan Academy
Going to talk about one of the most famous conquerors in all of human history, and that is Alexander the Great. But before talking about all of the things that he conquered, let’s think about how he got started out, and in particular, how he’s able to con…