yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Best Film on Newton's Third Law. Ever.


3m read
·Nov 10, 2024

There are a lot of misconceptions out there, and this is a video about one of the most common ones. So I went around asking people, "What makes the Moon go around the Earth?" and they told me, "The Earth puts a gravitational force on the moon."

But does the moon put a gravitational pull on the Earth? Pull on the Earth, yes. It does; hence we have tides, etc. The moon falls on the Earth, too; it affects like the tides and women, and yes, it does very powerful.

Does the moon pull on the Earth? Probably, that as well. Yeah. So what I want to know is how does that force that the moon exerts on the Earth—how does that compare in terms of size to the force the Earth exerts on the moon?

Well... No scientist, but I think that one would be more powerful than that one. It's got a greater force coming from the Earth because it's greater mass. The Earth has more mass [cuz] it's a bigger mess. I thought greater mass is more [equals] more force [guys].

Does the moon pull on the Earth? Yes. But a lot less. Yeah, not as much as the Earth pulls on the moon. Yeah. Yeah, but a little bit, not [very] strongly. Yes. But much, much, much, much smaller. Because if it's mass [less], [not] size. Because it's smaller. It's much smaller than [that], than the Earth because it's smaller.

This is small. Allow me to let you in on a little secret. Everyone got it wrong. The force that attracts the moon to the Earth is exactly the same size as the force that attracts the Earth to the moon.

So what's going on here? Why did everyone get it wrong? Well, I think it comes down to cause and effect. The effect of the force on the moon is quite clear; the moon goes in circles around the Earth. But the effect of that force on the Earth is basically negligible; the Earth barely wobbles at all.

So people interpret this negligible effect as indicating there's very little force affecting the Earth. But that is forgetting the third key piece of the puzzle, which is inertia. Inertia is the tendency of mass to maintain a state of motion. Since the Earth has a greater mass, it has a greater inertia.

And so even with the same amount of force on it, it doesn't accelerate that much. Now, the funny thing is many of the [people] I interviewed could state Newton's third law, which is: every [force] has an equal and opposite reaction.

Something about Newton's law doesn't seem to fit into that just yet. You're good at this! Wait, which Newton's law are we talking about—the whole equal and opposite force thing? Yeah, that one. So tell me what you're thinking, man.

[Ah], well, did one would think that if you're into putting a force on me, I would be putting an equal force upon it? So why didn't they apply it to this problem? Well, I think they may have memorized the words, but not really [believed] Newton's third law in their core. Did they really feel it in their spleen? [I] don't think they did.

So allow me to try to convince you, all of you, spleen included, that Newton's third law really is true. Let's consider two objects. Initially, they have the same mass: 1 kilogram each. So obviously, the gravitational force of attraction must be the same on both of the objects.

Now let's add a second kilogram to the first object. The force on the second object will now be twice as great because that 1 kilogram is attracted equally to each of the kilograms in the first object. But what is often forgotten is that new kilogram is also attracted to the second object, meaning that the total force on each object is still the same. They're attracted to each other with an equal and opposite force.

We could add a third kilogram, and we would find the same thing; the force on both objects is still the same, even though the object on the left has [3] times the mass of the object on the right.

So we can see that no matter what the mass, any two objects will have the same gravitational force towards each other. Can you feel Newton's third law in your spleen now? It should settle inside you and become a part of you.

More Articles

View All
Lessons Learned From Working on a Historic American West Railroad | Short Film Showcase
[Music] America built the railroads, and the railroads built America. Americans, Americans of all nationalities. [Music] America’s not just a place. America is a concept. There is nothing we can’t accomplish if we put our mind to it, that we were not afra…
Cynthia Nixon on Playing Nancy Reagan | Killing Reagan
Nancy Reagan is a fiercely devoted champion lover guard dog of her husband. She’s a political person, not so much in that she’s an issues person, but that she feels the temperature in the room. She can feel who’s on her side and who’s on her husband’s sid…
Shower Thoughts: Space Is Weird
The universe is a mind-boggling place. Actually, I’m not even sure I can call it a place. NASA says the universe is everything, but what they really mean is that it contains everything— all of space, energy, time, and matter, like you and me. But there’s …
Why You Shouldn’t Buy A Home In 2024
What’s up, Graham? It’s guys here, and uh, this is really bad. Even though I didn’t think it could actually be possible, a new survey just found that 90% of millennial home buyers have regrets about their first home purchase. Unlike previous years, I have…
Example exercise using limit flow chart
In a previous video, we introduced this flowchart that helps us think about what strategies to use when trying to determine a limit of a function as it approaches a point. What we’re going to do in this video is now try to apply that in several example ex…
ROBINHOOD LOOPHOLE GIVES YOU INFINITE MONEY
Before I start this video, I want to make a very serious disclaimer. The purpose of this video is to describe a newsworthy event, the issues surrounding it, why it’s a bad idea to engage in this type of behavior, and bring to light a very serious issue so…