yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Polar functions derivatives | Advanced derivatives | AP Calculus BC | Khan Academy


5m read
·Nov 11, 2024

What we have here is the graph of r is equal to sine of two theta in polar coordinates. If polar coordinates look unfamiliar to you, or if you need to brush up on them, I encourage you to do a search for polar coordinates in Khan Academy or look at our precalculus section. But I'll give you a little bit of a primer here. Let's just familiarize ourselves with why this graph looks the way it does.

When we look at this graph, we can specify points in terms of x and y coordinates or in terms of an angle and a radius. For example, this would have some x coordinate and some y coordinate, or we could draw a line from the origin to that point right over here and specify it with some angle theta and some r, which is the distance from the origin to that point.

To familiarize ourselves with this curve, let's explore it intuitively. When theta is 0, r is going to be 0; sine of 2 times 0 is just 0. So our r is at the origin. As theta gets larger, our r increases, allowing us to trace out this petal of this flower or clover-looking shape. It starts looking like that, and we could keep going all the way.

What happens when theta is equal to pi over 4? Well, when theta is equal to pi over 4, sine of 2 times pi over 4 is sine of pi over 2, which means r is equal to 1. We reach a kind of maximum r there. Then, as theta increases, our r once again starts to get smaller.

Now, in a calculus context, you might wonder how we express the rate of change of r with respect to theta. Pause this video and see if you can figure it out: what is r prime of theta? There’s really nothing new here; you have one variable as a function of another. You just use the chain rule and take the derivative with respect to theta.

The derivative of sine of two theta with respect to two theta is going to be cosine of two theta. Then you multiply that times the derivative of 2 theta with respect to theta, which is 2. So we could just keep the times 2 here or write a 2 out front.

That was interesting, but let's see if we can express this curve in terms of x's and y's and then think about those derivatives. A review from precalculus is that when you want to go between the polar world and, I guess you could say, rectangular world, you have to remember the transformations: y is equal to r sine of theta, and x is equal to r cosine of theta.

Now, just as a really quick primer, why does that make sense? Let's take one of these angle-r combinations right over here. So let's say this is theta and that is our r. The height of that side will be our y, and the length of this side will be our x. From trigonometry, we know sine of theta is opposite over hypotenuse, meaning sine of theta is equal to y over r, and cosine of theta is equal to the adjacent or x over r. You just have to multiply to rearrange these equations to get to what we have right over there.

Once again, if this is going too fast, this is just a review of polar coordinates from precalculus. Now we can express these purely in terms of theta. We know that r is equal to sine of two theta. So, we just have to replace these r's with sine of two theta.

Then y would be equal to sine of two theta times sine of theta, and x is going to be equal to sine of two theta times cosine of theta. Just like that! But we can also use these expressions to find the rate of change of y with respect to theta. Let’s find a general expression for it. Pause the video and see if you can do that.

Alright, let’s work through it together. Again, we’re just going to use our derivative techniques. I could write y prime of theta, the derivative of y with respect to theta. We’re going to use the product rule right over here. The derivative of this first expression is 2 cosine of 2 theta. We’ve already seen that coming out of the chain rule, and this times the second expression sine of theta plus the first expression sine of two theta times the derivative of the second expression, which is cosine of theta. Fair enough!

Now, we do the same thing for x: x prime of theta is the derivative of the first expression, which is going to be 2 times cosine of 2 theta times the second expression cosine of theta. Then you’ll have the first expression sine of 2 theta times the derivative of the second expression, which is negative sine of theta.

We could evaluate these at, for example, when theta is equal to pi over 4. When theta is pi over 4, we are going to be at this point right over there. Let’s evaluate it. If y prime of pi over 4 is equal to 2 cosine of pi over 2, that’s going to be zero because cosine of pi over 2 is 0.

So if that’s 0, all of this stuff is going to be 0. Here, sine of pi over 2 is 1, and cosine of pi over 4 is square root of 2 over 2. This is going to be equal to square root of 2 over 2.

We could do the same exercise with x. x prime of pi over 4 will still have this first part be equal to 2 times cosine of pi over 2, which is 0 as well. Thus, we conclude - sine of pi over 2 times sine of pi over 4, which is equal to square root of 2 over 2.

Let’s see why that makes sense. If you increase theta a little bit from pi over 4, your y coordinate continues to increase, which makes sense; you have a positive slope. But what happens to your x coordinate? As theta increases a little bit, your x coordinate starts to decrease. That’s why it makes sense that you have a negative rate of change here.

Now, the next question you might ask is, "How do I find the rate of change of y with respect to x?" Because I want to figure out the slope of the tangent line right over there, and it looks like it has a slope of negative 1.

How would we actually calculate it? One way to think about it is the derivative of y with respect to x is going to be equal to the derivative of y with respect to theta divided by the derivative of x with respect to theta. So at theta equal to pi over 4, this is going to be positive square root of 2 over 2 over negative square root of 2 over 2, simplifying to negative 1.

This makes sense; this does look like a tangent line that has a slope of negative 1. Hopefully, this puts it all together, and you’re feeling a little bit more comfortable. You got to review a little bit of polar coordinates, but we've augmented that knowledge by starting to take some derivatives.

More Articles

View All
"Where Love Is Illegal": Chronicling LGBT Stories of Love and Discrimination (Part 3) | Nat Geo Live
Our activism is continuing to evolve. In the next phase of Where Love Is Illegal, we are enduring to leverage our storytelling skills so we can further amplify the voices of LGBTQI+ communities around the world. And we’re doing just that in Jamaica. Last …
Slash and Burn | Live Free or Die
It should go back down. There’s so much green around it. Yeah, got the fire working for us. Looks pretty good up here. God, we just burnt like 400 square feet or some. Wow, this is the art of slashing burn. Whenever we move into a new area to terrace it …
I BOUGHT MY DREAM CAR!
Well guys, I finally did it! After years and years and years of literally, I’d, I’ve never owned my own car. After years of just riding a motorcycle and just bashing that around to get from A to B, and riding in the rain and all those horrible things, I …
Quotient rule | Derivative rules | AP Calculus AB | Khan Academy
What we’re going to do in this video is introduce ourselves to the Quotient Rule, and we’re not going to prove it in this video. In a future video, we can prove it using the Product Rule, and we’ll see it has some similarities to the Product Rule. But her…
The Fear of Death
[Music] Foreign death can only be interpreted by people who are alive. Yet since no one who is alive can simultaneously experience what it’s like to be dead, who then does death actually concern? This logic is oddly reassuring. Even so, if my doctor were …
Rewriting roots as rational exponents | Mathematics I | High School Math | Khan Academy
We’re asked to determine whether each expression is equivalent to the seventh root of v to the third power. And like always, pause the video and see if you can figure out which of these are equivalent to the seventh root of v to the third power. Well, a …