yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Can you be awake and asleep at the same time? - Masako Tamaki


3m read
·Nov 8, 2024

Many animals need sleep. Even brainless jellyfish enter sleep-like states where they pulse less and respond more slowly to food and movement. But all of the threats and demands animals face don’t just go away when it’s time to doze. That’s why a range of birds and mammals experience some degree of asymmetrical sleep where parts of their brain are asleep and other areas are more active. This is even true for humans.

So how does it work? All vertebrate brains consist of two hemispheres: the right and left. Brain activity is usually similar across both during sleep. But during asymmetrical sleep, one brain hemisphere can be in deep sleep while the other is in lighter sleep. And in an extreme version called “unihemispheric sleep,” one hemisphere may appear completely awake while the other is in deep sleep.

Take bottlenose dolphins. Their breathing is consciously controlled, and they must surface for air every few minutes or they’ll drown. When they have a newborn calf, they must actually swim nonstop for weeks in order to keep it safe. So dolphins sleep unihemispherically, with just one hemisphere at a time. This allows them to continue swimming and breathing while snoozing.

Other marine mammals also need asymmetrical sleep. Fur seals might spend weeks on end migrating at sea. They slip into unihemispheric sleep while floating horizontally, holding their nostrils above the surface, closing their upward-facing eye, and keeping their downward-facing eye open. This may help them stay alert to threats from the depths.

Similar pressures keep birds partially awake. Mallard ducks sleep in groups, but some must inevitably be on the peripheries. Those ducks spend more time in unihemispheric sleep, with their outward-facing eyes open and their corresponding brain hemispheres more active. Other birds have been shown to catch z’s in midair migration. While undertaking non-stop transoceanic flights of up to 10 days, frigatebirds either sleep with one or both hemispheres at a time. They do so in seconds-long bursts, usually while riding air currents. But the frigatebirds still sleep less than 8% of what they would on land, suggesting a great tolerance for sleep deprivation.

It’s currently unclear whether asymmetrical sleep packs the same benefits as sleep in both hemispheres and how this varies across species. In one experiment, fur seals relied on asymmetrical sleep while being constantly stimulated. But in recovery, they showed a strong preference for sleep across both hemispheres, suggesting that it was more restorative for them.

Dolphins, on the other hand, have been observed to maintain high levels of alertness for at least five days. By switching which hemisphere is awake, they get several hours of deep sleep in each hemisphere throughout a 24-hour period. This may be why unihemispheric sleep alone meets their needs.

So, what about humans? Have you ever woken up groggy after your first night in a new place? Part of your brain might’ve spent the night only somewhat asleep. For decades, scientists have recognized that participants sleep poorly their first night in the lab. It’s actually customary to toss out that night’s data.

In 2016, scientists discovered that this “first night effect” is a very subtle version of asymmetrical sleep in humans. They saw that, during the first night, participants experience deeper sleep in their right hemisphere and lighter sleep in their left. When exposed to infrequent sounds, that lighter sleeping left hemisphere showed greater bumps in activity. Participants also woke up and responded to infrequent sounds faster during the first night than when experiencing deep sleep in both hemispheres during nights following.

This suggests that, like other animals, humans use asymmetrical sleep for vigilance, specifically in unfamiliar environments. So, while your hotel room is obviously not trying to eat you and you’re not going to die if you don’t continue moving, your brain is still keeping you alert. Just in case.

More Articles

View All
Partial sums: formula for nth term from partial sum | Series | AP Calculus BC | Khan Academy
Partial sum of the series we’re going from one to infinity summing it up of a sub n is given by, and they tell us the formula for the sum of the first n terms. They say write a rule for what the actual nth term is going to be. Now to help us with this, l…
Modeling with multiple variables: Ice cream | Modeling | Algebra 2 | Khan Academy
We’re told that Ben’s home is x kilometers from an ice cream shop. Jerry’s home is y kilometers from the same shop. Then it tells us they each left their home at the same time and met at the ice cream shop at the same time. Ben walked an average speed—let…
A Conversation on Hard Tech with Eric Migicovsky
Welcome! We have Eric here today. So, Eric is a YC partner. He was previously the CEO and founder of Pebble, which went through the YC batch all the way back in the winter of 2011. A long time ago! You’re gonna find Eric. Now we have the other building on…
Could Sport Fishing Cause Shark Attacks? | When Sharks Attack: Tropical Terror
If tiger sharks are showing up in the shallows in greater numbers, then it’s not because of deep blue. The reason for the attacks remains elusive, but while scouring the ocean for an explanation, experts come across something else that also ensnares large…
How Gen Alpha Will Change Society Forever
Gen Alpha is the first generation of humans to be born with access to mobile technology. By the age of two, many Gen Alpha toddlers can already interact with these devices in meaningful ways. Beyond watching Cocomelon on YouTube, they can navigate the app…
Work-Energy Principle Example | Energy and Momentum | AP Physics 1 | Khan Academy
So the work energy principle states that the net work done on an object is going to equal the change in kinetic energy of that object. And this works for systems as well. So, the net work done on a system of objects is going to equal the change in the tot…