yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example scaling parabola


3m read
·Nov 11, 2024

Function G can be thought of as a scaled version of f of x equal to x^2. Write the equation for G of x. So like always, pause this video and see if you can do it on your own.

All right, now let's work through this together. So the first thing that we might appreciate is that G seems not only to be flipped over the x-axis but then flipped over and then stretched wider. So let's do these in steps.

First, let's flip over the x-axis. So if we were to do this visually, it would look like this: instead, when x is equal to 0, y is still going to be equal to 0. But when x is equal to -1, instead of y being equal to 1, it now will be equal to -1. When x is equal to 1, instead of squaring one and getting one, you then take the negative of that to get -1.

So when you flip it, it looks like this: when x is equal to -2, instead of y being equal to 4, it would now be equal to -4. As we just talked through, as we're trying to draw this flipped-over version, whatever y value we were getting before for a given x, we would now get the opposite of it or the negative of it.

So this green function right over here is going to be y is equal to the negative of f of x, or we could say y is equal to -x^2. Whatever x is, you square it, and then you take the negative of it. You see that this will flip it over the x-axis. But that by itself does not get us to G of x.

G of x also seems to be stretched in the horizontal direction. So let's think about can we multiply this by some scaling factor so that it does that stretching so that we can match up to G of x? The best way to do this is to pick a point that we know sits on G of x. They, in fact, give us one: they show us right over here that the point (2, -1) sits on G of x. When x is equal to 2, y is equal to -1 on G of x, or you could say G of 2 = -1.

Now, on our green function, when x is equal to 2, y is equal to -4. So let's see, maybe we can just multiply this by 1/4 to get our G. Let's see if we were to scale by 1/4; does that do the trick? Scale by 1/4.

So in that case, we're going to have y is equal to not just x^2, but (1/4) x^2. If you're saying, “Hey, how did you get 1/4?” well, I looked at when x is equal to 2 on our green function. When x is equal to 2, I get (2, -4), but we want that when x is equal to 2 to be equal to -1.

Well, -1 is 1/4 of -4, so that's why I said, “Okay, let’s see if we can take our green function. If I multiply it by 1/4, that seems like it'll match up with G of x.” So let's verify that: when x is equal to 0, well, this is still all going to be equal to 0, so that makes sense.

When x is equal to 1... let me do this in another color. When x is equal to 1, then (1^2) * (1/4) well, that does indeed look like -1/4 right there. When x is equal to 2, (2^2) is 4 * (-1/4) is indeed equal to -1.

When... let's try this point here because it looks like this is sitting on our graph as well. When x is equal to 4, (4^2) is 16; 16 * (-1/4) is indeed equal to -4, and it does work also for the negative values of x as well.

So I'm feeling really good that this is the equation of G of x. G of x is equal to (-1/4) * x^2. In general, when we say we're scaling it, we're scaling it by a negative value. This is what flips it over the x-axis. Then multiplying it by this fraction that has an absolute value less than one is actually stretching it wider. If the absolute value of this value right over here was greater than one, then it would stretch it vertically or make it thinner in the horizontal direction.

More Articles

View All
Gravitational potential energy at large distances | AP Physics 1 | Khan Academy
Let’s do a little bit of review of potential energy and especially gravitational potential energy because in this video we’re going to get a little bit more precise. So, let’s say that I have an object here. It has a mass of m, and I were to change its p…
How Is Warren Buffett Spending His $80B Net Worth?
Hey guys, welcome back to the channel. In this video, we’re going to be discussing exactly how Warren Buffett spends his billions. Warren Buffett, the Oracle of Omaha as he’s referred to, he’s currently the fourth richest person in the world with a net wo…
Democratic ideals in the Declaration of Independence
The goal of this video is to appreciate how ideas of natural rights, social contract, limited government, and popular sovereignty are embedded in America’s founding documents. But before we start looking at the documents themselves, let’s just make sure w…
Paul Buchheit: What traits do startups need to succeed?
I think like focus is one of the most important things because like as a start-up, it’s actually I think your most powerful weapon. Right? Like the reason that you’re able to take on like these big companies or areas is because they’re doing a thousand di…
Standing Up For Startups - YC Goes To D.C.
What does success look like for you when you leave your Hill visit this week? We believe that little Tech can and should exist. And, you know, done right, little Tech will actually go on to create some of the best companies out there. We don’t want one o…
Watch: Fireflies Glowing in Sync to Attract Mates | National Geographic
[Music] The synchronous Firefly ranges throughout the southern Appalachian. It really is a pretty magical thing to see. I think people are just fascinated by fireflies, you know, especially growing up. A lot of people have experiences of catching fireflie…