yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
2017 Berkshire Hathaway Annual Meeting (Full Version)
Thank you and good morning. Duh, that’s Charlie. I’m Warren. You can tell us apart because, uh, he can hear and I can see. That’s why we, uh, work together so well. We usually have our specialty. Uh, I’d like to welcome you to, uh, we got a lot of out-of…
You Will Go Broke If You Do These Things (Beginner Investors, Take Note!)
Hey guys, before we got started with this video, I just wanted to let you know that, um, all November long I will be doing Movember. So hopefully, over the next few weeks, you’ll start to see in my videos, I’ll start to be getting a little bit of a mo. I …
opening a new stage in my life
[Music] We from the north, baby, the cold. Maybe I know you can’t get enough. Good morning everyone! I hope you guys are doing good. I’m acting like it’s super early, but it’s actually 11 a.m. because I woke up today around actually at like 9:30ish. But y…
Verifying solutions to differential equations | AP Calculus AB | Khan Academy
[Instructor] So let’s write down a differential equation: the derivative of y with respect to x is equal to four y over x. And what we’ll see in this video is the solution to a differential equation isn’t a value or a set of values. It’s a function or a…
Limits at infinity of quotients with square roots (even power) | AP Calculus AB | Khan Academy
Let’s see if we can find the limit as x approaches negative infinity of the square root of four x to the fourth minus x over two x squared plus three. And like always, pause this video and see if you can figure it out. Well, whenever we’re trying to find…
How To Be More Focused While Studying - A Quick Guide
Hey, it’s Joey and welcome to Better [Music] Ideas. So, if you’re anything like me, you find it sometimes really difficult to just dive into work. I’m talking not really about procrastination, but the specific inability to eliminate distractions and get i…