yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
Why Vulnerability is Power | Priceless Benefits of Being Vulnerable
After his brother renounced the throne, Bertie unexpectedly became king. He faced the difficult task of ruling a country on the verge of World War II. Due to his crippling stammer, which caused him much personal discomfort and embarrassment, Bertie mainta…
Physics Nobel Prize 2011 - Brian Schmidt
[Applause] There are few things in the world that seem more constant than the stars in the night sky. If you look up at the Milky Way, you will see the same thing that people have looked at for thousands and thousands of years. But as Professor Schmidt fo…
Jim Bell's 'Assassination Politics'
Assassination politics is the name of an essay by a guy called Jim Bell. In it, Bell plausibly describes what he takes to be an inevitable technological event that will make it impossible for the state to exist, at least in the forms we’re familiar with r…
Genetic Engineering Will Change Everything Forever – CRISPR
Imagine you were alive back in the 1980’s, and were told that computers would soon take over everything: from shopping, to dating, and the stock market. That billions of people would be connected via a kind of web. That you would own a handheld device, or…
The common-ion effect | Equilibrium | AP Chemistry | Khan Academy
The presence of a common ion can affect a solubility equilibrium. For example, let’s say we have a saturated solution of lead(II) chloride. Lead(II) chloride is a white solid. So, here’s the white solid on the bottom of the beaker, and the solid is at equ…
Calculating the equation of a regression line | AP Statistics | Khan Academy
In previous videos, we took this by variant data and we calculated the correlation coefficient. Just as a bit of a review, we have the formula here, and it looks a bit intimidating. But in that video, we saw all it is, is an average of the product of the …