yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
Exposing The Flaw In Our Phone System
This is Linus from Linus Tech Tips, and we hacked the phone network in order to spy on him. That’s pretty messed up, Derek. I slept easier not knowing that. We intercepted his phone calls and stole his two-factor passcodes. Is that your number, Linus? Yea…
Charlie Munger: 24 Standard Causes of Human Misjudgment
Well, I am very interested in the subject of human misjudgment, and Lord knows I’ve created my well, a good bit of it. I don’t think I’ve created my full statistical share, and I think that one of the reasons was that I tried to do something about this te…
How to Make a Snare | Live Free or Die: DIY
[Music] If you’re planning on catching an animal, one of the simplest kinds of traps that you can build is a snare. You can make it out of a vine, a piece of cordage, string, or a piece of electrical appliance cord. Now, I don’t have electricity, so I don…
Sanskrit connections to English | World History | Khan Academy
In the 18th century, you start to have significant interaction between the English and the Indians, especially in the East Indian Company. And as part of that, you start to have Western scholars start to really study Sanskrit and the Vedas. As they do the…
World War III: The Devastating Consequences and Bleak Future #Shorts
Imagine waking up one morning to a world devastated by nuclear winter. Outside, there’s smoke so thick that you can’t see the sun. Sludge runs from your taps instead of water, and you survive on rations of canned goods from a better time. Factions of peop…
Homeroom with Sal & Kristen DiCerbo PhD - Wednesday, September 23
Hi everyone! Sal here. Welcome to our homeroom live stream. We have an exciting show! We’re going to have Kristen D’Serbo, Khan Academy’s Chief Learning Officer, answering any questions you have about motivation and having more independence as a learner. …