yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
The Power of Leverage
Last piece of making money is you have to have leverage. Leverage is critical. Leverage, you know, Archimedes famously said, “give me a lever long enough and a place to stand, and I will move the Earth.” That was a very powerful statement where he was bas…
A Place for Cheetahs | National Geographic
The last thing we want to do is lose this cat after a long journey and all this effort and all the permitting and everything that’s gone into getting him here. Yeah, and if you’ve got a dart gun, right, running full here into this fence. So these are four…
Infinite Scrolling Has Ruined Society Forever
I am sorry. Those were the words uttered by AAR Rasin, the creator of the infinite scroll, after realizing his invention destroyed billions of people around the world. This one simple feature turned us into addicts. Is it too late for us to stop doom scro…
Why the Sky ISN'T Blue
Happy 500,000! Thank you guys so much for subscribing to my channel and for joining me on this scientific adventure. You know, if you got 500,000 people together and we all held hands in a line, it would stretch from Sydney to Melbourne or from San Franci…
Compliment/complement and desert/dessert | Frequently confused words | Usage | Grammar
Hello grammarians! Continuing our journey through the world of frequently confused words, I’d like to begin with “complement” with two e’s and “complement” with an i and an e. How the heck do we keep these separate? Well, first let’s get some definitions…
Strategies for dividing by tenths
Let’s do a few more examples of thinking of strategies for dividing decimals. In the future, we’re going to come up with a more systematic way of doing it, but it’s really important to come up with some of these strategies because it gives you an intuitio…