yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
The ONE thing most Millionaires do that makes them Millionaires
What’s up, you guys? It’s Graham here. So, this is something that so many people seem to miss entirely or just don’t fully understand. This is also something that the most financially successful people all seem to do on autopilot without ever even thinkin…
How to start learning a language-Language tips from a Polyglot
Hi guys, it’s me, Judy. I’m a first-year medical student in Turkey, and today we’re gonna be talking about how to start learning a new language. A lot of people want to learn a new language, but most of us don’t know where to start or what to do. So, I ho…
CREEPY WOODY !!! -- IMG! #31
Creepy Woody and this place is great for kids. Wait… It’s episode 31 of IMG! Parents are awesome, except when they play favorites. And here’s Bert in real life. There won’t be any cats in this episode, but there will be zombie jean shorts, rigor mortis gi…
This Intimate Look at a Woman's Last Days Will Touch Your Soul | National Geographic
I’m not afraid of dying. Sometimes I think dying is a relief. I would rather pass on than to not be able to have any good times. The thing I miss the most is not being able to see the cards and play cards. I miss going to bridge. Can’t eat much at times. …
When Does Healthy Fitness Become Unhealthy? The Dark Side of Teen Bodybuilding #Shorts
The gym has been a sort of therapy for me, and when I go there, I can turn the world off for an hour or two and just focus on pushing the weight. Going to the gym regularly also teaches discipline, hard work, consistency, and perseverance, all of which ca…
Sun Tzu | How to Fight Smart (The Art of War)
This video doesn’t condone violence or war of any kind, but simply explores the tactics from an ancient text, and how these might work in everyday (non-military) settings in the modern world. Nevertheless, some information and graphics in this video could…