yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
What's The Most Dangerous Place on Earth?
Hey, Vsauce. Michael here. 93% of all the humans who have ever lived are dead. For every person alive right now, there are 15 people who are no longer alive. The Earth is dangerous… but where is the most dangerous place on Earth? Ignoring freak occurrenc…
The Ebola Virus Explained — How Your Body Fights For Survival
What makes Ebola so dangerous? How can a virus overwhelm the very complex defense system of the body so quickly and so effectively? Let’s take a look at what Ebola does. (Theme music) Ebola is a virus. A virus is a very small thing. A bit of RNA or DNA a…
Human population dynamics| Human populations| AP Environmental Science| Khan Academy
What we have here is a really interesting visual that shows world population growth from 1750 all the way to 2100. Obviously, this isn’t 2100 yet, so it’s doing some projecting for roughly the next 80 years. It also shows the absolute world population ove…
My Life As an Adventure Filmmaker and Photographer (Part 1) | Nat Geo Live
I was just down in Antarctica on a really incredible expedition. We’re doing a climate change story on the wildlife and the conditions, and, uh, a fishing story as well on what’s happening down in Antarctica. The last 5 days of the journey, we crossed th…
Survey from Neo Babylonians to Persians | World History | Khan Academy
Let’s now continue with our super-fast journey through history. One thing I want to point out, ‘cause I already touched on it in the previous video, is while we talk about this ancient history, I’m also referring to some stories from the Old Testament, an…
What The Most Carefree Philosopher Can Teach Us | ZHUANGZI
Many centuries ago, a curious Taoist philosopher named Zhuangzi sat by the riverbank, absorbed in the gentle flow of the water, as his fishing rod lay nearby. Unexpectedly, two vice-chancellors appeared before him, having been dispatched by the Prince of …