yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's take, let's do some examples where we're finding the sums of finite geometric series, and let's just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common ratio to the nth power all over 1 minus our common ratio.

So, let's apply that to this finite geometric series right over here. So, what is our first term and what is our common ratio? Well, and what is our n? Some of you might just be able to pick it out by inspecting this here, but for the sake of this example, let's expand this out a little bit.

This is going to be equal to 2 * 3 to the 0, which is just 2, plus 2 * 3 to the first power, plus 2 * 3 to the second power. I could write first power there, plus 2 * 3 to the 3rd power, and we're going to go all the way to 2 * 3 to the 99th power.

So, what is our first term? What is our a? Well, a is going to be 2, and we see that in all of these terms here, so a is going to be 2. What is r? Well, each successive term as k increases by one, we're multiplying by 3 again, so 3 is our common ratio.

So, that right over there, that is r. Let me make sure that we, that is a, and now what is n going to be? Well, you might be tempted to say, well, we're going up to k equal 99, maybe n is 99, but we have to realize that we're starting at k equals 0. So, there are actually 100 terms here.

Notice when k equals 0, that's our first term. When k equals 1, that's our second term. When k equals 2, that's our third term. When k equals 3, that's our fourth term. When k equals 99, this is our 100th term.

So, what we really want to find is S sub 100. So, let's write that down. S sub 100 for this geometric series is going to be equal to 2 * (1 - 3 to the 100th power) all of that over (1 - 3).

And we could simplify this. I mean at this point, it is arithmetic that you'd be dealing with, but down here you would have a negative 2, and so you'd have 2 minus (or 2 divided by -2), so that is just a negative.

And so, negative of (1 - 3 to the 100th) that's the same thing. This is equal to 3 to the 100th power minus 1, and we're done.

More Articles

View All
Example visually evaluating discrete functions
What we have here is a visual depiction of a function, and this is a depiction of y is equal to h of x. Now, when a lot of people see function notation like this, they can see it as somewhat intimidating until you realize what it’s saying. All a function …
15 Signs Of A Cheap Life
A cheap life doesn’t mean a lack of money; it means a lack of understanding of what to do with whatever amount you have. It isn’t about being stingy; it’s about being frugal with the things that truly matter. In today’s video, we’re taking a look at 15 si…
Benedict Cumberbatch solo rappels down a cliff | Running Wild with Bear Grylls
Okay, time is of the essence now, so you’ve got to get that and yourself safely down to me. I’m at the base of the cliff, so use those improvised talents. Remember that Italian hitch, lower it down, and then lower yourself. Okay, copy that. It’s a big ar…
Live More by Doing Less | The Philosophy of Slow Living
We live in an age where speed is a virtue: the faster, the better. You’re hungry? Your smartphone allows you to order food from countless restaurants and have it delivered in no time. You want to be entertained? Today’s streaming services bring the latest…
Phil Town's Stock Portfolio REVEALED! (Rule #1 Fund Annual Report)
Hey guys, welcome back to the channel! In this video, we are going to be talking about Phil Town’s stock and options portfolio because we actually get this revealed to us now. Phil Town has announced, or he has released or filed the first Rule One Fund a…
The #1 PROBLEM with Betterment Investing
What’s up you guys, it’s Graham here. So lately there’s been a very big focus towards investment apps and high interest savings accounts that offer you a pretty substantial value for what it is. Like, at first we had a lie bank with their 2.2 percent int…