yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 6a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


4m read
·Nov 11, 2024

The McLen series for a function ( f ) is given by, and they give it in Sigma notation, and then they expand it out for us. It converges to ( f(x) ) for the absolute value of ( x ) being less than ( R ), where ( R ) is the radius of convergence of the McLen series.

Part A: Use the ratio test to find ( R ). So first of all, if terms like McLen series and radius of convergence, or even convergence or ratio test seem foreign to you or you have some foggy memories of it, you might want to review all of those concepts on KH Academy. We actually have multiple videos and exercises on each of these concepts on KH Academy.

But if you kind of know what it is, I will give you a little bit of a reminder for the ratio test. The ratio test tells us if we have an infinite series, so we go from ( n = 1 ) to infinity, and each term is ( a_n ). The ratio test says, all right, let's consider the ratio between successive terms. So we could say the ratio of ( a_{n+1} ) over ( a_n ), and in particular, we want to focus on the absolute value of this ratio.

By itself, it might not be a constant like we would see in a geometric series; it actually might be a function of ( n ) itself. So we want to see the behavior of this ratio as ( n ) gets really, really, really large, as we're kind of, you know, adding those terms as we're getting close to infinity.

So we'd want to take the limit as ( n ) approaches infinity here. If this limit exists, let's say it's ( L ). If ( L < 1 ), then the series converges. If ( L > 1 ), it diverges. If it's equal to 1, it's inconclusive.

What we want to do here is figure out the absolute value of the ratio, take the limit, and then see for what ( x ) values that limit will be less than one. So let's do that.

Let's first think about this ratio. So ( a_{n+1} ) over ( a_n ) is going to be equal to... So if we put ( n + 1 ) into this expression here, we're going to have... So let me make this clear.

So I'm going to do ( a_{n+1} ) up here. So we're going to have ( -3^{n+1} ) instead of ( -3^n ), and then times ( x^{n+1} ) over ( (n+1) ). So that's ( a_{n+1} ) there, and ( a_n ) is just ( -3^n \cdot x^n ) over ( n ).

What does this right over here simplify to? This is going to be equal to... Well, we could just say this divided by that; it's the same thing as multiplying by the reciprocal of all of this stuff down here. So it's ( -3^n \cdot x^{n+1} ) over ( (n+1) ) times the reciprocal of this business, so times ( \frac{n}{-3^n \cdot x^n} ).

Can we simplify this? Well, we can divide both the numerator and the denominator here by ( x^n ). So this divided by ( x^n ) is just ( 1 ), and this divided by ( x^n ) is going to be ( x ) or ( x^1 ). We can divide the numerator and the denominator by ( -3^{n-1} ). Well, this is just going to be ( 1 ), and if you divide ( -3^n ) by ( -3^{n-1} ), well that's just going to be ( -3^1 ).

So this is all going to be ( \frac{3x}{n + 1} ). Now let's think about what the limit of the absolute value of this as ( n ) approaches infinity is. So the limit as ( n ) approaches infinity of the absolute value of ( \frac{-3x}{n + 1} ).

Now some of you might recognize if we focus on ( n ), we have the same degree up here, same degree down here; both are ( n^1 ). So ( \frac{n}{n + 1} ) is going to approach ( 1 ), and so you might say, okay well, this is going to be the absolute value of ( -3x ).

But if you want to make that a little bit clearer, this is equal to the limit as ( n ) approaches infinity of... and I'll write it this way. Let me write it so I could write the absolute value of ( -3x ) or the absolute value of ( -3x ) is the same thing as ( 3 \times \text{absolute value of } x \times \text{absolute value of } \ldots ).

If I divide the numerator here by ( n ), I would get ( 1 ), and if I divide the denominator by ( n ), I can do... as long as I multiply or divide the denominator and the numerator by the same thing, I'm not changing the value. So if I divide both of them by ( n ) in the numerator, I just get ( 1 ). In the denominator ( n/n ) is ( 1 ); ( 1/n ) is ( +1/n ).

This might be a little bit clearer that, okay, as ( n ) approaches infinity... well, we don't know; this doesn't deal with ( n ), but this over here ( 1/n ) is going to approach ( 0 ). And so this whole thing is going to approach ( 1 ), and so the limit is going to be ( 3 \times \text{absolute value of } x ).

So remember, this series converges if this limit is less than one. So it converges if ( 3 \times \text{absolute value of } x < 1 ). We could say the absolute value of ( x ) divided both sides by ( 3 ) is less than ( \frac{1}{3} ).

So we have just found our radius of convergence ( R ). We could say ( R ) is equal to ( \frac{1}{3} ). This McLen series is going to converge as long as the absolute value of ( x ) is less than ( \frac{1}{3} ), or we could say our radius of convergence is equal to... our radius of convergence is equal to ( \frac{1}{3} ).

So there you go.

More Articles

View All
Making Custard | Live Free or Die: How to Homestead
[Music] Custard utilizes ingredients that we tend to have a lot of, so I want to teach you how to make custard. All you need is milk, eggs, and honey, and then you can add some flour or corn starch and some vanilla. Okay, all right, let’s just use up all …
Top 10 Most Expensive Headphones In The World
Today we’re looking at the top 10 most expensive headphones in the world. Welcome to A Lux Calm, the place where future billionaires come to get inspired! Hey there, Alack Sirs, today is a great day to pump up the volume and listen up because we’re talki…
Detonation vs Deflagration - Smarter Every Day 1
Hey, it’s me, Destin. So, um… we don’t have really awesome accents and we don’t have a lot of money, but we do know our guns. And we are rocket scientists. So, we’re gonna start a new web series called Smarter Every Day. [Music] Uh, we’re gonna try to te…
How to Stop Procrastination Right Now | The 3-2-1 Rule
Hey, it’s Joey and welcome to Better Ideas. I was just sitting in my apartment and realized that I really needed to do my laundry. I’ve been putting it off for like the past two days or so. You know, I’m a busy guy, and every time I thought about doing my…
Compare costs of postsecondary education | Careers and education | Financial literacy | Khan Academy
So let’s talk a little bit about how to compare costs based on all of your college options. The biggest piece of cost is going to be your tuition, and then of course your living expenses: room and board, where you’re going to live, and what you’re going t…
Russian Dating School | Explorer
[music playing] TIM SAMUELS: If turning the clock back to the 1950s wasn’t far enough for me and my cushion tush, I have a date with another popular school. One that draws its inspiration from caveman times. Valentina Vychushanina’s class encourages men …