yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Neil deGrasse Tyson Demystifies Breakthroughs | Breakthrough


2m read
·Nov 11, 2024

There's a stereotype of discoveries and breakthroughs. The stereotype is: at one point you don't know something, and then there's a Eureka moment, and then you know something, and that's a breakthrough. The very word itself implies some barrier through which you pass with some force. Okay? Otherwise, it would be walk-through instead of breakthrough.

But I would claim that most discoveries are walk-throughs, not breakthroughs. You're not actually breaking things. You say, "Oh, you got that? You got that? Let me put it together, and I have a new thing." Oh, that's cool! Did you break through anything? No, no. It was like a next thing you would do with the other things that exist on your table right now.

We do occasionally have literal breakthroughs, yes, but most of what we experience in life and enjoy in life as the product of science and technology are not breakthroughs. They're just not the discoveries that came next after other discoveries enabled it. You can focus on those things that broke through, but that feeds the bias that that's how we move forward in the world.

Was it a breakthrough that someone decided to print books small so that you can carry them with you instead of only having to be in a library? Make the jackets out of paper instead of boards so that they're light? Was that a breakthrough? Just say, "That's kind of a fun idea." You know, that's a really trivial example, but it's the kind of example I'm talking about.

So much of what we take for granted, somebody actually had to think up first but didn't have to break through a damn thing to get there. Not everyone's brain is wired to think up these new applications of what is already there or to invent a new thing that does not previously exist. That's a very special subset of who walks among us as human beings, and we need them. Otherwise, we stall.

We stagnate. If a nation does not have such people, then the nation has to follow everybody else who does, and they dance to the tune played by other nations who do invest in that way. What I find fun are products that get invented, and you wonder, "No one will ever need or want to use that," and then five years later, somebody finds a use, and then you can't live without it.

More Articles

View All
What The Most Carefree Philosopher Can Teach Us | ZHUANGZI
Many centuries ago, a curious Taoist philosopher named Zhuangzi sat by the riverbank, absorbed in the gentle flow of the water, as his fishing rod lay nearby. Unexpectedly, two vice-chancellors appeared before him, having been dispatched by the Prince of …
The Expansion of the Philadelphia Mob | Narco Wars
[music playing] GEORGE ANASTASIA: The Italian American Mob of Philadelphia was Philadelphia-based, but it had tentacles into southern New Jersey as far east as the Atlantic City resort. LOU PICHINI: In the late 70s where legalized gambling came to Atlan…
Discontinuities of rational functions | Mathematics III | High School Math | Khan Academy
So we have this function ( f(x) ) expressed as a rational expression here, or defined with a rational expression. We’re told that each of the following values of ( x ) selects whether ( f ) has a zero, a vertical asymptote, or a removable discontinuity. …
Estimating decimal multiplication
Let’s now get some practice estimating multiplying with decimals. So first, here we have 7.8 times 307 is approximately equal to what? When you see the squiggly equal sign, that means approximately equal to one. What? So pause this video and see if you ca…
Introduction by Kirsty Nathoo
Hi everyone, uh my name is Kirsty. Auu, I’m one of the partners at Y Combinator, and I would like to wish you a very warm welcome to this amazing venue for Startup School. This is our first International Startup School that we’ve done, so we’re very excit…
Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy
The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1⁄8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( ai ) is ( 2 \times a{i-1} ). What is…