yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits of combined functions | Limits and continuity | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's find the limit of f of x times h of x as x approaches 0.

All right, we have graphical depictions of the graphs y equals f of x and y equals h of x. We know from our limit properties that this is going to be the same thing as the limit as x approaches 0 of f of x times the limit as x approaches 0 of h of x.

Let's think about what each of these are. So let's first think about f of x right over here. As x approaches 0, notice the function itself isn't defined there. But we see when we approach from the left, the function seems to be approaching the value of negative one right over here. As we approach from the right, the function seems to be approaching the value of negative one.

So the limit here, this limit is negative one. As we approach from the left, we're approaching negative one. As we approach from the right, the value of the function seems to be approaching negative one.

Now, what about h of x? Well, h of x, we have down here. As x approaches zero, the function is defined at x equals zero. It looks like it is equal to one. The limit is also equal to one. We can see that as we approach it from the left, we are approaching one. As we approach from the right, we are approaching one.

As we approach x equals zero from the left, the function approaches one. As we approach x equals zero from the right, the function itself is approaching 1. It makes sense that the function is defined at x equals 0 and the limit as x approaches 0 is equal to the value of the function at that point because this is a continuous function.

So this is 1, and negative 1 times 1 is going to be equal to negative 1. So that is equal to negative 1.

Let's do one more. All right, so these look like continuous functions. We have the limit as x approaches zero of h of x over g of x. Once again, using our limit properties, this is going to be the same thing as the limit of h of x as x approaches 0 over the limit of g of x as x approaches 0.

Now, what's the limit of h of x as x approaches zero? Let's see. As we approach zero from the left, our function seems to be approaching four. As we approach x equals zero from the right, our function also seems to be approaching 4. That’s also what the value of the function is at x equals 0.

That makes sense because this is a continuous function. The limit as we approach x equals 0 should be the same as the value of the function at x equals 0. So this top is going to be 4.

Now, let's think about the limit of g of x as x approaches 0. From the left, it looks like the value of the function is approaching 0. As x approaches 0 from the right, the value of the function is also approaching 0. This also happens to be g of zero. g of zero is also zero.

This makes sense that the limit and the actual value of the function at that point is the same because it's continuous. So this also is zero.

But now we're in a strange situation. We have to take 4 and divide it by 0. So this limit will not exist because we can't take 4 and divide it by 0.

Even though the limit of h of x as x approaches 0 exists and the limit of g of x as x approaches zero exists, we can't divide four by zero. So this whole entire limit does not exist.

It does not exist, and actually, if you were to plot h of x over g of x, if you were to plot that graph, you would see it even clearer that that limit does not exist. You would actually be able to see it graphically.

More Articles

View All
Discussions of conditions for Hardy Weinberg | Biology | Khan Academy
In the introductory video to the Hardy-Weinberg equation, I gave some conditions for the Hardy-Weinberg equation to hold. What I want to do in this video is go into a little bit more depth and have a little more of a discussion on the conditions for the H…
r-selected and K-selected population growth strategies | High school biology | Khan Academy
What we’re going to do in this video is talk about different population growth strategies for different species and think about if we can come up with a broad categorization or if there’s a broad categorization already out there for us. We see that there…
Know the Law - Smarter Every Day 8
So a couple of days ago a guy named Chris was detained here in Baltimore, right here at the Cultural Center light rail station. Well, all he was doing was taking video of trains. It was his hobby. Why shouldn’t he be able to do that? ”…that’s your story.…
ENDURANCE | Official Trailer | National Geographic Documentary Films
We ready? Yes. Okay, let’s find the Endurance. We’re still talking about Shackleton because this is the greatest tale of survival in history, and it’s a story about failure. Success awaits; dive ones, let’s go. In 1914, Shackleton was convinced the great…
He Risked Death as First American to Explore Africa's Deepest Parts | National Geographic
We have to go back to who William Stamps Cherry was at the age of 20. He does head out for Africa against everybody’s advice, who said, “You’re going to die over there.” He went into Africa in 1889 and went further in the Congo than any other white man ha…
Eulers formula magnitude
In this video, we’re going to talk a bunch about this fantastic number e to the J Omega T. One of the coolest things that’s going to happen here, we’re going to bring together what we know about complex numbers and this exponential form of complex numbers…