yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
A Park Reborn: Bringing Wildlife Back | Nat Geo Live
( intro music ) Bob Poole: Gorongosa National Park sits right in the middle of Mozambique. In 1964, a long war for independence broke out against Portugal. And that was followed by an even longer civil war that lasted until 1992. The armies fed off the w…
How to take AI from vision to practice. Part 3
This conversation forward. Please ask questions, comment in the chat. Uh, we’d love to hear from you. So let, um, yes, we are sharing. We are recording this webinar, and we will be sharing the webinar after it is done, so absolutely you’ll be able to acce…
How To Get Rich According To Steve Jobs
There are a million ways to make a million dollars, and in this video, we’re looking at one of them. If Steve Jobs were alive today, he would be among the top 10 richest people on the planet. Jobs was known to be a non-conformist, a man focused on buildin…
The Potential Origin of Mummification | Lost Treasures of Egypt
In the desert of Gabileen, just south of Luxor, Meredith searches for evidence of Egypt’s earliest death rites. She believes the myths that drove Egyptians to mummify their own bodies had roots much earlier than ancient Egyptian civilization. Prehistoric …
Startup Advisor Equity? - Pebble Watch Founder Eric Migicovsky
Bringing on advisors or creating a network of people who can help you is critical for an early stage founder, especially a first-time founder. I did it myself; I had ups and downs in the process, but that’s just like every other part of building a startup…
Paul Buchheit: What traits do startups need to succeed?
I think like focus is one of the most important things because like as a start-up, it’s actually I think your most powerful weapon. Right? Like the reason that you’re able to take on like these big companies or areas is because they’re doing a thousand di…