yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
Beware: The Inverted Yield Curve
Once of you guys, it’s Graham here. So every now and then, I like to deviate a bit from real estate and personal finance to discuss some other topics of importance, and this is one of them. That would be the inverted yield curve, and this is a topic that’…
Charlie Munger: These 3 Simple Mental Models Helped Me Become a Billionaire
Hey everyone! Today’s video is about Charlie Munger and the concept of mental models. Charlie Munger is one of my favorite investors to study. He’s vice chairman of Berkshire Hathaway, the conglomerate controlled by Warren Buffett. Buffett has described M…
Can We Save These Rare Toads From Extinction? | National Geographic
[Music] The WNG toad is found only in the Laramy Plains of Wyoming. It’s found nowhere else in the world, and it has the maybe unfortunate distinction of being one of the most endangered amphibians in North America. I think it’s the most endangered amphib…
When Watersports Become Dangerous | Science of Stupid: Ridiculous Fails
Some things just don’t go together– oil and water, gas and matches, tequila and fireworks. So you can imagine my concern when I heard about a combination of kayaking and surfing. Then I saw this and thought perhaps I’m worrying about nothing. And then I …
Using units to solve problems: Toy factory | Working with units | Algebra I | Khan Academy
We’re told a factory makes toys that are sold for ten dollars a piece. The factory has 40 workers, and they each produce 25 toys a day. The factory is open five days a week. What is the total value of toys the factory produces in a day? Pause this video …
From Broke To $500,000,000 (The Empire of Ben Mallah)
So I’d like to introduce you to the most loud-mouthed, over-the-top offensive real estate mogul you’re ever going to meet: Ben Mala. “I bought it because I’m a big fat [__] business, that’s what you worry about.” He is your true rags-to-riches story, hav…