yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
Fossils | Evolution | Middle school biology | Khan Academy
[Narrator] When I was 12 years old, I went on vacation to Alaska with my family. While walking down one of the cold stone covered beaches, I spotted a large pile of rocks that seemed to have slid off the side of one of the hills that connected to the shor…
Integration by parts: definite integrals | AP Calculus BC | Khan Academy
Going to do in this video is try to evaluate the definite integral from 0 to pi of x cosine of x dx. Like always, pause this video and see if you can evaluate it yourself. Well, when you immediately look at this, it’s not obvious how you just straight up…
Mohnish Pabrai: How to Invest Like Warren Buffett & Charlie Munger
People think that entrepreneurs take risk and they get rewarded because they take risk. In reality, entrepreneurs do everything they can to minimize risk. They are not interested in taking risk; they want free lunches, and they go after free lunches. So i…
Get Ahead Of The Game: 15 Asset Classes Set To Soar In 2024
2024 is an election year, so there’s no way the government will let the entire economy go down the drain. Right? Right. That’s what we’re all still hoping. Everyone agrees it’s not going to be an easy year to navigate. With the recession deepening, but no…
Monarch Migration and Metamorphosis | Incredible Animal Journeys | National Geographic
In Texas, the monarch is close to exhaustion. With her last reserves, she’s seeking out the perfect spot to lay her eggs. Using her amazing sense of smell, she’s on the hunt for milkweed, the only food her babies will eat. It’s a plant which was once abun…
Where will Tesla be in 10 years? (w/ @HyperChangeTV)
[Music] Hey guys! Welcome back to yet another episode of the New Money Advent Calendar. We’re still going strong, and a very special video is coming in for you guys today - another collab! This time with my mate, Gally Russell, over in Seattle at the mome…