yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
Finding Nemo's Plot Mistake - Smarter Every Day 115
[ music ] Hey, it’s me Destin, welcome back to Smarter Every Day. Tonight is… what? Family movie night! Very good, what are we going to watch tonight? What is this? Nemo! OK, let’s go. What happened to the mommy? He didn’t… he got ate, maybe. She did. [ D…
This Is Only Red
Happy New Year, Vsauce! Michael here. And in honor of 2013, let’s discuss 13 things. To begin, where to spend all that cash you picked up over the holidays? Now, plenty of websites sell cool stuff. United Nuclear sells Aerogel, radioactive isotopes, jet …
Visualizing marginal utility MU and total utility TU functions
What we’re going to do is think about the graphs of marginal utility and total utility curves. And so right over here I have a table showing me the marginal utility I get from getting tennis balls. And so it says look, if I have no tennis balls and I’m no…
Debt: Good debt and bad debt | Loans and debt | Financial literacy | Khan Academy
So let’s talk a little bit about debt. Debt is just the amount of money that you owe, used in the form of loans. It could also be your balance on a credit card, which is really a loan from the credit card issuer. I would say there is good debt and there …
Functions continuous at specific x-values | Limits and continuity | AP Calculus AB | Khan Academy
Which of the following functions are continuous at x = 3? Well, as we said in the previous video, in the previous example, in order to be continuous at a point, you at least have to be defined at that point. We saw our definition of continuity: f is cont…
Worked example: Using bond enthalpies to calculate enthalpy of reaction | Khan Academy
[Educator] Bond enthalpies can be used to estimate the standard change in enthalpy for a chemical reaction. Let’s use bond enthalpies to estimate the enthalpy of combustion of ethanol. Looking at our balanced equation, we have one mole of ethanol reacti…