yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
How UV Causes Cancer and Aging
Recently, I made a video about what the world looks like in the ultraviolet. Some things look the same, but generally, it’s hazier. Sometimes light and dark are flipped, skin looks blotchier, and fake teeth stand out. Whoa! Smile for me. Oh my goodness, …
Golf Course Camping | Dirty Rotten Survival
As the boy’s head deeper into suburbia, Johnny needs to find a legal place to make camp before it gets too late. What is this? We think it is… it’s a golf course. What’s your stay here? Obviously, this woods is owned by the golf course. “Look, a fire! Ge…
This Is A Light-Nanosecond!
I trimmed my beard yesterday, so I’m feeling a bit like a baby today. But look at the trimmings! Specifically this one that is 2.4 fortnits worth of beard growth. How do I know? Well, because of this tool I made. This about 5 years ago to free people from…
Homeroom with Sal & Lily Eskelsen García - Wednesday, August 12
Hi everyone, welcome to the Homeroom live stream. Sal here from Khan Academy. Super excited about the conversation we’re going to have today. But before we get started, I will give my standard announcements. First of all, a reminder that we are not for p…
Labeling voltages
In this video, I want to do a demonstration of the process of labeling voltages on a circuit that we’re about to analyze. This is something that sometimes causes stress or confusion, and I want to just basically try to get out of that stressful situation.…
Why AI Data Centers Are So Important For Development
This is the biggest problem we have in terms of staying ahead in AI, particularly for defense. So, this issue, which you saw manifest itself in the last 24 hours, is about data center costs. Each center costs $2 to $4 billion. There are only 25 teams tryi…