yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
MORE BANKS ARE COLLAPSING (How To Prepare)
What’s up, Graham? It’s guys here. And if you thought the banking collapse was over, well, think again. In the middle of mass withdrawals and declining savings, First Republic could be the next bank to fail, even after two multi-billion dollar bailouts. …
Chase a Wild Buffalo Stampede With These Heroic Cowboys | Short Film Showcase
[Music] Big day we’re all been waiting for. Buffalo waiting; all of us are excited, a little nervous, but I guess we’re ready—ready as we’re going to be. My name is Duke Phillips. I manage the Mana Ranch. It’s um, a little over 100,000 acres located in t…
Kirsty Nathoo with Shan-Lyn Ma, Founder of Zola
Okay, hi everybody. I’m Kirsty Nathu. I’m one of the partners at Y Combinator, and it is my great honor to introduce Shanna Lynn, MA, who’s the CEO of Zola. Zola has reinvented the wedding gift registry, and they’ve now worked with hundreds of thousands o…
This is what I do everyday...
Oh my God, it’s such a bad parking job! Well, how about this: if you shoot more than three over, you have to let me drive your Cybertruck for a week. Can you believe that? Chad has it out for me today! Like, come on. What’s up everyone? Welcome back to t…
See the Sparks That Set Off Violence in Charlottesville | National Geographic
The point of the rally is to, number one, protect this statue because this statue is one of many statues that are in honor of the history of Western civilization and European peoples that are being torn down. [Applause] The policies that liberals have put…
You Can Do More Than You Think | The Growth Mindset
Probably most people know the story about the turtle and the rabbit, in which the rabbit laughed at the turtle because of his slowness. But to his surprise, the turtle challenged the rabbit to a race. Initially, the rabbit thought the turtle was joking, b…