yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
The Mummification of Seti I | Ultimate Treasure Countdown
[music playing] NARRATOR: Seti the First was the father of our friend Ramesses the Great. Just like his son, he was a hugely successful pharaoh. But in father-son rivalry, there’s one category where he wins hands down: his mummy. Because Seti the First b…
Using the tangent angle addition identity | Trigonometry | Precalculus | Khan Academy
In this video, we’re going to try to compute what tangent of 13 pi over 12 is without using a calculator. But I will give you a few hints. First of all, you can rewrite tangent of 13 pi over 12 as tangent of… instead of 13 pi over 12, we can express that…
Why AI Data Centers Are So Important For Development
This is the biggest problem we have in terms of staying ahead in AI, particularly for defense. So, this issue, which you saw manifest itself in the last 24 hours, is about data center costs. Each center costs $2 to $4 billion. There are only 25 teams tryi…
Messages and morals | Reading | Khan Academy
Hello readers! Today I’d like to talk to you about the moral of the story. Which story? Well, we’ll get to that. First, what is a moral? It’s a lesson, usually about how you’re supposed to treat other people. I think we can say that if a story has a moral…
Coexisting With the Lions of Botswana | National Geographic
[Music] Lions are an iconic species of Africa, and to have the opportunity to work in a wild place like this and to actually be able to make a difference, it’s hard to describe how important it is to me. In northern Botswana, lions move out of the delta …
Bond enthalpies | Thermodynamics | AP Chemistry | Khan Academy
Bond enthalpy is the change in enthalpy, or delta H, for breaking a particular bond in one mole of a gaseous substance. If we think about the diatomic chlorine molecule, so Cl₂, down here is a little picture of Cl₂. Each of the green spheres is a chlorine…