yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
5 FREE Ways to Get Better With Money
Hey guys and welcome back to the channel. Today we’re going to be discussing five awesome tips that will help you get better with money that are completely free. No fluff! I’m not going to tell you to go fill in surveys for 10 hours. I’m going to tell you…
David Friedman. What About The Poor?
Some people have no money, no friends, and no assets. Would these people also have no rights in an anarcho-capitalist society? Now, if you have somebody with no money at all, and nobody who likes them is willing to help him out, he may not be able to affo…
5 Philosophical Questions Without Satisfying Answers
Some questions have been keeping humanity busy since the dawn of time. Moreover, complete civilizations and religions have been built around these questions. No matter how much we have debated, researched, and observed, there just doesn’t seem to be a sat…
Inside the Svalbard Seed Vault
So this is like the world’s most important freezer? It is. Really. laughs The most important room in the world, someone has said. These are pretty big claims for a place located just 1300 km, or 800 miles from the north pole. But then, this is no ordinary…
Introduction to production functions | APⓇ Microeconomics | Khan Academy
You will hear the term production function thrown around in economics circles, and it might seem a little intimidating and a little mathy at first. But as you’re about to see, it’s a fairly basic idea. It’s this idea that you could have these various inp…
Warren Buffett's BIG Warning for Investors (2021)
I would like to, uh, just go over two items that I would like particularly new entrants to the stock market to, uh, ponder just a bit before they try and do 30 or 40 trades a day, uh, in order to profit from what looks like a very, uh, easy game. So, uh, …