yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
From Startup to Scaleup | Sam Altman and Reid Hoffman
Thank you all for coming here. You’re, um, uh, everyone here is an important part of our, uh, of our joint Network. Um, this event started with a, um, kind of a funny set of accidents. First, Sam had this brilliant idea of teaching a startup class at Stan…
Why being yourself is ruining your life
Just be yourself has become sort of a statement that people venerate these days. People celebrate just be yourself probably because it kind of feels like a warm hug. Just be yourself and everything’s gonna be okay. It feels kind of empathetic, understandi…
Startup Investor School Day 1 Live Stream
And the way the course is organized is there’s a lecture and then there’s a Q&A afterwards. So please hold your questions until the Q&A session at the end unless an instructor explicitly says they want questions during their talk. I will also take…
This New Zealand Couple Is Charming—So Is Their Farming | Short Film Showcase
[Music] We shall have a cup of tea. They met in 1953, two young refugees over bickies and tea. We didn’t even say a word. Maybe you’re a bit too shy. It was love at first cup, with a wink and a smile. Faye and Joe Gok danced down the aisle. As Chinese we…
My Response To iDubbbzTV | The Full Story
I got really anxious one month because I was like I spent like 800 on ubereats this month. I was like that’s bad. [Music] What’s up guys, it’s Graham here, and I’m not gonna lie, today is one of those moments where I have to sit down and pinch myself to …
The Warning Of Hyper Inflation | $2 Trillion Stimulus
What’s up you guys, it’s Graham here. So I’m gonna be attempting to answer one of the most difficult questions that I’ve been getting asked recently here in the channel after this new stimulus plan was recently passed, and that would be: Am I still wearin…