yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
How to Angel Invest, Part 1
Hey, this is Nivi. You’re listening to the Navall podcast. We haven’t published an episode here in a while, and that’s because we’ve been publishing on another podcast called Spearhead. What we’re discussing on Spearhead is how to be a good angel investor…
Conditions for MVT: table | Existence theorems | AP Calculus AB | Khan Academy
So we’ve been given the value of h of x at a few values of x, and then we’re told James said that since h of 7 minus h of 3 over 7 minus 3 is equal to 1. So this is really the average rate of change between x is equal to 3 and x is equal to 7, between th…
Equilibrium nominal interest rates in the money market | AP Macroeconomics | Khan Academy
So we’ve spent a lot of time justifying why we have this downward sloping demand curve for money, but you’re probably asking, “Well, this is a market. What we need to think about an equilibrium point?” And to do that, we need to think about the supply of …
Worked example: Product rule with table | Derivative rules | AP Calculus AB | Khan Academy
The following table lists the values of functions F and H and of their derivatives f prime and H prime for x is equal to 3. So, let’s just tell us when x is equal to three, the value of the function is six. F of three is six. You could view it that way: H…
How to motivate and engage your kids in learning while at home
Hey everyone, welcome to our webinar! My name is Lauren Kwan, and I’m on the Khan Academy team. Today, I am joined by my co-worker, Dan Tu, and our special guest, Connor Corey. Connor is an expert teacher, a parent, and a Khan Academy ambassador, which me…
Marten Hat | Life Below Zero
So once I get them to this point, a lot of times I like to hang them up so I can work on them a little bit better. Very little goes to waste. You want to kind of take your time and get it started pretty good, and you can pretty much just pull straight dow…