yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring using polynomial division: missing term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

We're told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that.

All right, now let's work on this together. Because they give us one of the factors, what we can do is say, "Hey, what happens if I divide ( x + 6 ) into ( p(x) )? What do I have left over?" It looks like I'm still going to have a quadratic, and then I'll probably have to factor that somehow to get a product of linear factors. So let's get going.

If I were to try to figure out what ( x + 6 ) divided into ( x^3 + 9x^2 ), and now we're going to have to be careful. You might be tempted to just write -108 there, but then this gets tricky because you have your third-degree column, your second-degree column, you need your first-degree column, but you just put your zero-degree, your constant column here.

So to make sure we have good hygiene, we could write ( + 0x ), and I encourage you to actually always do this if you're writing out a polynomial so that you don't skip that place, so to speak, -108.

And so then you say, "All right, let's look at the highest degree terms." ( x ) goes into ( x^3 ) ( x^2 ) times. ( x^2 ) times ( 6 ) is ( 6x^2 ). ( x^2 ) times ( x ) is ( x^3 ). We want to subtract. We've done this multiple times, so I'm going a little bit faster than normal. Those cancel out.

( 9x^2 - 6x^2 = 3x^2 ). Bring down that ( 0x ). And then how many times does ( x ) go into ( 3x^2 )? Well, it goes ( 3x ) times, and we would write it in this column. Notice if we didn't keep this column for our first-degree terms, we'd be kind of confused where to write that ( 3x ) right about now.

And so ( 3x ) times ( 6 ), I should say, is ( 18x ). ( 3x ) times ( x ) is ( 3x^2 ). We want to subtract what we have in that, I guess that color is move light purple, not sure. And so we get ( 3x^2 )'s cancel out, and then ( 0x - 18x = -18x ). Bring down that ( -108 ).

And so then we have ( x ) goes into ( -18x ) ( -18 ) times. ( -18 ) times ( 6 ) is ( -108 ). That's working out nicely. ( -18 ) times ( x ) is ( -18x ), and then we want to subtract what we have in this not so pleasant brown color.

And so I will multiply them both by negative, and so I am left with zero; everything just cancels out. And so I can rewrite ( p(x) ). I can rewrite ( p(x) ) as being equal to ( x + 6 \times (x^2 + 3x - 18) ).

But I'm not done yet because this is not a linear factor; this is still quadratic. So let's see, can I think of two numbers that add up to ( 3 ) and then when I multiply I get ( -18 )? So they'll need different signs, and then the obvious one is positive ( 6 ) and negative ( 3 ).

And if that what I just did seems like voodoo to you, I encourage you to review factoring polynomials. But this I can rewrite because negative ( 6 + ) or actually I should say positive ( 6 + (-3) ) is equal to ( 3 ), and then positive ( 6 \times negative ( 3 ) is equal to ( -18 ).

So I can rewrite this as ( x + 6 \times (x + 6) \times (x - 3) ). And so there we have it; we have a product of linear factors, and we are done.

More Articles

View All
10 Good Problems You Want To Have
Everybody’s got problems, but you know not all problems are the same. There are some problems you actually want to have because they’re the indicator of a good life. When you take things for granted, you forget the good things that life has offered you. …
Is Cereal Soup?
Hey, Vsauce. Michael here. Take a look at this. Simple enough, right? But watch what happens next. Okay, what the heck is this thing? Mostly people eat it like a soup, out of a bowl with a spoon. But is it a soup? The word ‘soup’ comes from words that or…
Words Are the Most Powerful Drug | Origins: The Journey of Humankind
Humans stand alone in the animal kingdom. Our power over nature is unparalleled. What separates us? What is it that makes us human? The answer lies in our mastery of communication: the power to express complex thoughts and ideas; to organize and think col…
Power dissipation in resistors in series versus in parallel
A student builds a circuit with a battery and two light bulbs in series. Then the student builds a second circuit with two light bulbs in parallel. Which battery runs out of power first? Assume all bulbs have equal resistance. Assume both batteries have …
Charlie Munger: How to Make Your First $1 Million (5 Steps)
Charlie Munger is currently a billionaire with an estimated net worth of 2.4 billion dollars as of 2022. However, that wasn’t always the case. While Charlie didn’t grow up poor by any means, he wasn’t lucky enough to be born into a rich and prominent fami…
Electron configurations with the periodic table | Chemistry | Khan Academy
Let’s explore electronic configurations. It’s basically arranging electrons of different elements in various shells and subshells. Let me quickly show you some examples. Yes, this will look overwhelming, but for now, focus on these numbers: 1, 2, 3, 4, 5,…