yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential growth: How folding paper can get you to the Moon


2m read
·Nov 9, 2024

How many times can you fold a piece of paper? Assume that one had a piece of paper that was very fine, like the kind they typically use to print the Bible. In reality, it seems like a piece of silk. To qualify these ideas, let's say you have a paper that's one-thousandth of a centimeter in thickness. That is 10 to the power of minus three centimeters, which equals .001 centimeters.

Let's also assume that you have a big piece of paper, like a page out of the newspaper. Now we begin to fold it in half. How many times do you think it could be folded like that? And another question: If you could fold the paper over and over, as many times as you wish, say 30 times, what would you imagine the thickness of the paper would be then? Before you move on, I encourage you to actually think about a possible answer to this question.

OK. After we have folded the paper once, it is now two thousandths of a centimeter in thickness. If we fold it in half once again, the paper will become four thousandths of a centimeter. With every fold we make, the paper doubles in thickness. And if we continue to fold it again and again, always in half, we would confront the following situation after 10 folds.

Two to the power of 10, meaning that you multiply two by itself 10 times, is one thousand and 24 thousandths of a centimeter, which is a little bit over one centimeter. Assume we continue folding the paper in half. What will happen then? If we fold it 17 times, we'll get a thickness of two to the power of 17, which is 131 centimeters, and that equals just over four feet.

If we were able to fold it 25 times, then we would get two to the power of 25, which is 33,554 centimeters, just over 1,100 feet. That would make it almost as tall as the Empire State Building. It's worthwhile to stop here and reflect for a moment. Folding a paper in half, even a paper as fine as that of the Bible, 25 times would give us a paper almost a quarter of a mile. What do we learn? This type of growth is called exponential growth, and as you see, just by folding a paper we can go very far, but very fast too.

Summarizing, if we fold a paper 25 times, the thickness is almost a quarter of a mile. 30 times, the thickness reaches 6.5 miles, which is about the average height that planes fly. 40 times, the thickness is nearly 7,000 miles, or the average GPS satellite's orbit. 48 times, the thickness is way over one million miles.

Now, if you think that the distance between the Earth and the Moon is less than 250,000 miles, then starting with a piece of Bible paper and folding it 45 times, we get to the Moon. And if we double it one more time, we get back to Earth.

More Articles

View All
What Reagan policies are still debated today? | US Government and Civics | Khan Academy
How has the debate over Reagan’s policies evolved into today? When Reagan was making the case, they called it the Reagan Revolution because it was a real departure from the way the federal government had been existing in American life. The debate had most…
Gordon Ramsay Learns the Art of Braai Cooking | Gordon Ramsay: Uncharted
[Music] At least I can hear that. Yeah, yeah, loud and clear. I’ve been fishing in some remote places, but never in front of an audience of hippos. I’m cause you’re looking over because those things. Josh, lonely, yes? How that thing’s getting closer. Ye…
This Amazing Dog Helps to Save Endangered Parrots | Short Film Showcase
This is Ajax, and I’ve trained him to help me find kea nests. He’s the only kea dog in the country, and I guess that means the world. People are really shocked when you tell them that there are less kea than there are kiwis. I’ve been training Ajax since …
The Banach–Tarski Paradox
Hey, Vsauce. Michael here. There’s a famous way to seemingly create chocolate out of nothing. Maybe you’ve seen it before. This chocolate bar is 4 squares by 8 squares, but if you cut it like this and then like this and finally like this, you can rearrang…
Taking a break from stocks
What’s up, Graham? It’s guys here. So, I think it’s really important that we talk about a concerning new trend that’s just started to surface in the stock market over the last few weeks. And listen, I get it. These last few months have been rather eventf…
Interpreting change in exponential models: with manipulation | High School Math | Khan Academy
Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following functio…