yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential growth: How folding paper can get you to the Moon


2m read
·Nov 9, 2024

How many times can you fold a piece of paper? Assume that one had a piece of paper that was very fine, like the kind they typically use to print the Bible. In reality, it seems like a piece of silk. To qualify these ideas, let's say you have a paper that's one-thousandth of a centimeter in thickness. That is 10 to the power of minus three centimeters, which equals .001 centimeters.

Let's also assume that you have a big piece of paper, like a page out of the newspaper. Now we begin to fold it in half. How many times do you think it could be folded like that? And another question: If you could fold the paper over and over, as many times as you wish, say 30 times, what would you imagine the thickness of the paper would be then? Before you move on, I encourage you to actually think about a possible answer to this question.

OK. After we have folded the paper once, it is now two thousandths of a centimeter in thickness. If we fold it in half once again, the paper will become four thousandths of a centimeter. With every fold we make, the paper doubles in thickness. And if we continue to fold it again and again, always in half, we would confront the following situation after 10 folds.

Two to the power of 10, meaning that you multiply two by itself 10 times, is one thousand and 24 thousandths of a centimeter, which is a little bit over one centimeter. Assume we continue folding the paper in half. What will happen then? If we fold it 17 times, we'll get a thickness of two to the power of 17, which is 131 centimeters, and that equals just over four feet.

If we were able to fold it 25 times, then we would get two to the power of 25, which is 33,554 centimeters, just over 1,100 feet. That would make it almost as tall as the Empire State Building. It's worthwhile to stop here and reflect for a moment. Folding a paper in half, even a paper as fine as that of the Bible, 25 times would give us a paper almost a quarter of a mile. What do we learn? This type of growth is called exponential growth, and as you see, just by folding a paper we can go very far, but very fast too.

Summarizing, if we fold a paper 25 times, the thickness is almost a quarter of a mile. 30 times, the thickness reaches 6.5 miles, which is about the average height that planes fly. 40 times, the thickness is nearly 7,000 miles, or the average GPS satellite's orbit. 48 times, the thickness is way over one million miles.

Now, if you think that the distance between the Earth and the Moon is less than 250,000 miles, then starting with a piece of Bible paper and folding it 45 times, we get to the Moon. And if we double it one more time, we get back to Earth.

More Articles

View All
He Spent His Career Studying a Frog. Then He Discovered Its True Identity. | Short Film Showcase
[Music] So, after all the different tree frogs, there is one group that really captivated my interest, and that was the leaf frogs. You can just imagine seeing one of those in the wild; it’s just incredible. You know, the great big eyes open, they’ve got …
How To Invest In 2020 | My Concerns
What’s up guys? It’s Graham here. So let’s attempt to answer the age-old question—a question that’s been unanswered for thousands of years, a question that historians have been pondering since the beginning of time—and that would be: how to invest in 2020…
3d vector field example | Multivariable calculus | Khan Academy
So in the last video, I talked about three-dimensional vector fields, and I finished things off with this sort of identity function example where at an input point (X, Y, Z), the output vector is also (X, Y, Z). Here, I want to go through a slightly more …
How I built a $275 million biotech company from nothing
What I founded Envision, I just did not look like the typical biotech or healthcare founder. I’m a brown woman. I’m a woman of color, and I didn’t have any one of the many higher degrees that they like, you know, MBA, PhD, MD. So there I am with my little…
Squishy Robot Fingers: A Breakthrough for Underwater Science | National Geographic
We’re in the northern part of the Red Sea, and the reason we’re here is we’re trying to test out our squishy robot fingers for the first time in a reef. So we tested these squishy fingers in a swimming pool, and now we wanted to put them to the true test…
Proof of the tangent angle sum and difference identities
In this video, I’m going to assume that you already know a few things, and we’ve covered this. We’ve proved this in other videos that sine of x plus y is equal to sine of x cosine y plus, and then you swap the cosines and the sines: cosine of x sine y. T…