yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Exponential growth: How folding paper can get you to the Moon


2m read
·Nov 9, 2024

How many times can you fold a piece of paper? Assume that one had a piece of paper that was very fine, like the kind they typically use to print the Bible. In reality, it seems like a piece of silk. To qualify these ideas, let's say you have a paper that's one-thousandth of a centimeter in thickness. That is 10 to the power of minus three centimeters, which equals .001 centimeters.

Let's also assume that you have a big piece of paper, like a page out of the newspaper. Now we begin to fold it in half. How many times do you think it could be folded like that? And another question: If you could fold the paper over and over, as many times as you wish, say 30 times, what would you imagine the thickness of the paper would be then? Before you move on, I encourage you to actually think about a possible answer to this question.

OK. After we have folded the paper once, it is now two thousandths of a centimeter in thickness. If we fold it in half once again, the paper will become four thousandths of a centimeter. With every fold we make, the paper doubles in thickness. And if we continue to fold it again and again, always in half, we would confront the following situation after 10 folds.

Two to the power of 10, meaning that you multiply two by itself 10 times, is one thousand and 24 thousandths of a centimeter, which is a little bit over one centimeter. Assume we continue folding the paper in half. What will happen then? If we fold it 17 times, we'll get a thickness of two to the power of 17, which is 131 centimeters, and that equals just over four feet.

If we were able to fold it 25 times, then we would get two to the power of 25, which is 33,554 centimeters, just over 1,100 feet. That would make it almost as tall as the Empire State Building. It's worthwhile to stop here and reflect for a moment. Folding a paper in half, even a paper as fine as that of the Bible, 25 times would give us a paper almost a quarter of a mile. What do we learn? This type of growth is called exponential growth, and as you see, just by folding a paper we can go very far, but very fast too.

Summarizing, if we fold a paper 25 times, the thickness is almost a quarter of a mile. 30 times, the thickness reaches 6.5 miles, which is about the average height that planes fly. 40 times, the thickness is nearly 7,000 miles, or the average GPS satellite's orbit. 48 times, the thickness is way over one million miles.

Now, if you think that the distance between the Earth and the Moon is less than 250,000 miles, then starting with a piece of Bible paper and folding it 45 times, we get to the Moon. And if we double it one more time, we get back to Earth.

More Articles

View All
Understanding Evil | The Story of God
To understand why evil exists, we have to know where it comes from. Some faiths see it as an unseen force that pervades the entire world—demons that lurk in the darkness. For Christianity, it could be the Devil Himself. Or is evil something that comes fro…
What does it take to broker corporate jet deals?
One thing, when we’re selling an airplane, people always need to know what’s the history of the airplane. How do we know that the maintenance is correct, the pedigree is correct, how it’s been maintained, or where it’s lived—location, or in a hangar? We …
Rainforests 101 | National Geographic
(Birds chirping) - [Narrator] Shrouded in a blanket of clouds, they awaken. Their canopies of green glitter in the sun. Their wildlife start to slither. (Snake hissing) - Chirp. (Birds chirping) - And growl. (Growling) - And one of the planet’s richest ec…
Bill Belichick & Ray Dalio on Toughness: Part 1
When we were talking before, we were talking about, um, the different elements and systemizing it. Um, for example, you describe the different types of toughness. Um, the person gets hit this way has got a certain type of toughness. This you probably gave…
Applying the chain rule and product rule | Advanced derivatives | AP Calculus AB | Khan Academy
What we’re going to do in this video is try to find the derivative with respect to X of (x^2 \sin(X)) all of that to the third power. And what’s going to be interesting is that there are multiple ways to tackle it. I encourage you to pause the video and …
Dot Com Makes Good | Wicked Tuna
We’re gonna go over to Dave and check his fish out. Steam it, steam it, baby! You having fun yet? Huh? Yeah, huh? This is no round just drive-bys, right? We mark that man big. The meat is pink, beautiful! Here, we’re gonna make a lot of money here. Till …