yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simulations and repetition | Intro to CS - Python | Khan Academy


2m read
·Nov 10, 2024

I'm running a coin flip experiment and I want to find out how likely each outcome is: heads or tails. So I flip a coin once, twice, 100 times. Once I've repeated that experiment enough times, I see that about 50% of my flips are heads and 50% are tails.

Now, that's not a particularly interesting result. You probably could have told me that's what would happen at the beginning. But what if the experiment I want to repeat is much bigger? Instead of physically performing the experiment, we can simulate it with code.

For example, maybe I want to simulate a car crash to predict the risk of injury to the passengers, or I want to simulate a forest fire to predict how far it'll spread, or I want to simulate crop growth so I can predict yields and decide what to plant. These are all things that would be far too costly, too devastating, or take far too long to repeat in the real world.

But if we build a computer simulation, we can repeat the experiment as many times as we want for free, modifying different data inputs along the way. To simulate crop growth, I might combine climate and soil data with different irrigation and fertilizer choices, and then repeat how that affects my crop growth over a series of time steps.

Weather simulations work the same way. They collect wind, air pressure, and other readings from hundreds of different balloons, buoys, and satellites, and apply mathematical models over a series of time steps.

Okay, but why is the weather forecast wrong so much of the time then? It's almost impossible to 100% model the real world in a program. There's just so much data and randomness to take into account. And as humans, we don't always have access to all the data or 100% understand all the relationships involved.

Sometimes there are simply too many relationships that the computer physically can't process that much information in a reasonable amount of time. These are some of the limitations of our current weather models. We don't have data on the conditions at every single point on Earth, and even if we did, the computer wouldn't be able to handle all that data.

We can, in theory, more accurately predict tomorrow's weather, but by the time we get the result, it'll be the day after tomorrow. So for practicality, almost all simulations make some assumptions or simplifications about the world around us and settle for good enough results according to their needs.

Whether there's constraints on the data available, the amount of time they have to build the simulation, or the sheer computing power required, with just conditionals and variables, we can start to write our own basic simulations in Python. We're only missing two things: we need to be able to repeat our experiment and we need to be able to model some of the randomness that occurs in the real world.

More Articles

View All
The Bullet Block Experiment
Alright, here is the setup: I have a rifle mounted vertically and we’re going to shoot a bullet into this block, right into the middle of it. So obviously the block is going to go flying into the air. But we’re going to do this again and instead of firin…
Multiply monomials by polynomials: Area model | Algebra 1 | Khan Academy
We are told a rectangle has a height of five and a width of three x squared minus x plus two. Then we’re told to express the area of the entire rectangle, and the expression should be expanded. So pause this video and see if you can work through this. Al…
The Illegal and Secretive World of Chameleon Ranching | National Geographic
Chameleons have a lot of crazy things going on and are pretty unique in the lizard world. They have these independently rotating googly eyes, this prehensile tail which is basically a monkey tail they can use like a fifth limb, and spring-loaded tongs tha…
Picture of Everything? -- DONG
This website lets you create a custom message that takes up the entire page. You can then share the custom URL with friends to say something loudly, bigly. But for more things you can do online now, guys, this is DONG. The Sound Walk is like Guitar Hero …
Examples recognizing transformations
What we’re going to do in this video is get some practice identifying some transformations. The transformations we’re going to look at are things like rotations, where you are spinning something around a point. We’re going to look at translations, where y…
The Lagrangian
All right, so today I’m going to be talking about the Lagrange multipliers. Now, we’ve talked about Lagrange multipliers; this is a highly related concept. In fact, it’s not really teaching anything new; this is just repackaging stuff that we already know…