yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the intermediate value theorem: table | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The table gives selected values of the continuous function f. All right, fair enough. Can we use the Intermediate Value Theorem to say that the equation f of x is equal to 0 has a solution where 4 is less than or equal to x is less than or equal to 6? If so, write a justification.

So pause this video and see if you can think about this on your own before we do it together.

Okay, well, let's just visualize what's going on and visually think about the Intermediate Value Theorem. So if that's my y-axis there, and then let's say that this is my x-axis right over here. We've been given some points over here. We know when x is equal to zero, f of x is equal to zero. Let me draw those.

So we have that point when x is equal to two, y or f of x, y equals f of x is going to be equal to negative two, so we have a negative two right over there. When x is equal to four, f of x is equal to 3. So 1, 2, 3. I'm doing them on a slightly different scale so that I can show everything. And when x is equal to 6, f of x is equal to 7. So 3, 4, 5, 6, 7.

So right over here. Now they also tell us that our function is continuous. So one intuitive way of thinking about continuity is I can connect all of these dots without lifting my pencil. So the function might look, I'm just going to make up some stuff, it might look something anything like what I just drew just now. It could have even wilder fluctuations, but that is what my f looks like.

Now the Intermediate Value Theorem says, "Hey, pick a closed interval," and here we're picking the closed interval from 4 to 6. So let me look at that. So this is 1, 2, 3, 4. Here, this is 6 here, so we're going to look at this closed interval. The Intermediate Value Theorem tells us that, look, if we're continuous over that closed interval, our function f is going to take on every value between f of 4, which in this case is equal to 3, and f of 6, which is equal to 7.

So someone said, "Hey, is there going to be a solution to f of x is equal to say 5 over this interval?" Yes, over this interval for some x, you're going to have f of x being equal to 5. But they're not asking us for an f of x equaling something between these two values; they're asking us for an f of x equaling 0.

0 isn't between f of 4 and f of 6. And so we cannot use the Intermediate Value Theorem here. If we wanted to write it out, we could say, "f is continuous, but 0 is not between f of 4 and f of 6," so the Intermediate Value Theorem does not apply.

All right, let's do the second one. So here they say, "Can we use the Intermediate Value Theorem to say that there is a value c such that f of c equals zero and 2 is less than or equal to c is less than or equal to 4?" If so, write a justification.

So we are given that f is continuous, so let me write that down. We are given that f is continuous, and if you want to be over that interval, but they're telling us it's continuous in general. Then we can just look at what is the value of the function at these endpoints.

So our interval goes from 2 to 4. So we're talking about this closed interval right over here. We know that f of 2 is going to be equal to negative 2. We see it in that table, and what's f of 4? f of 4 is equal to 3.

So 0 is between f of 2 and f of 4. You can see it visually here; there's no way to draw between this point and that point without picking up your pen, without crossing the x-axis, without having a point where your function is equal to zero.

And so we can say, "So according to the Intermediate Value Theorem, there is a value c such that f of c is equal to zero and 2 is less than or equal to c is less than or equal to 4." So all we're saying is, "Hey, there must be a value c," and the way I drew it here, that c value is right over here where c is between 2 and 4, where f of c is equal to 0.

This seems all mathy and a little bit confusing sometimes, but it's saying something very intuitive. If I had to go from this point to that point without picking up my pen, I am going to at least cross every value between f of 2 and f of 4 at least once.

More Articles

View All
Putting a Penny on John Wilkes Booth's Grave
Let’s talk about Robert Todd Lincoln. He was Abraham Lincoln’s son, and in 1863 or ‘64, he slipped at the New Jersey train depot. He was almost crushed by a train car, but his life was saved when a man reached out and grabbed him, pulling him back. That m…
MANTIS MURDER SHRIMP (Slow Motion) - Smarter Every Day 121
Yeah. Hey it’s me Destin, welcome back to Smarter Every Day. So I’ve seen enough videos on the internet of a mantis shrimp punching to have a good idea of what’s going on, but I don’t understand it, like at the mechanical level. So today on Smarter Ever…
10 Ways To Instantly Improve Your Life
Significant improvement comes from long-term action. But there are lots of things you can actively do today that will instantly improve the quality of your life. Welcome to LAX. First stop, fix your sleep. We’re going to start off with probably the lowes…
15 Signs Someone is Fake Smart
Nothing inflates your ego more than the illusion that you’re the smartest in the room. But in many cases, people pretend to be smart to feel special and mask their insecurities. These are 15 signs someone is faking being smart. Welcome to alux.com, the p…
Why are people mean on Twitter? - Smarter Every Day 214
You’ve probably heard a lot of talk lately about bots on Twitter or even foreign involvement in our political process. For example, the president of the United States publicly thanked a Twitter account which we now know was run by malicious actors located…
Understanding lease agreements | Housing | Financial Literacy | Khan Academy
What we’re going to do in this video is look at an example of a lease agreement. This one says “State of Texas Texas Lease Agreement”. You might say, “I don’t live in Texas,” but this is going to be useful for most anywhere. The things we’re going to cove…