yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Is the Universe Discrete or Continuous?


2m read
·Nov 3, 2024

You said that we went from atoms in the time of Democritus down to nuclei, and from there to protons and neutrons, and then to quarks. It's particles all the way down. To paraphrase Feynman, we can keep going forever, but it's not quite forever. Right at some point, you run into the Planck length. There's the Planck time, there's the Planck length, there's even the Planck mass, which is actually quite a large mass.

These things don't have any physical significance. It's not like the Planck time is the shortest possible time, and it's not like the Planck length is the shortest possible length. The reason for that is because these Planck things are part of quantum theory, but length is not described by quantum theory. It's described by the general theory of relativity, and in that theory, space is infinitely divisible.

There is no smallest possible length or time. This illuminates an ancient tension between the discrete and the continuous because quantum theory seems to suggest that things are discrete. For example, there's a smallest possible particle of gold—the gold atom. There's a smallest possible particle of electricity—the electron. There's a smallest possible particle of light—the photon.

In quantum theory, we have this idea of discreteness—that there is a smallest possible thing from which everything else is built. But in general relativity, the idea is the opposite. It says things can continuously vary, and if the mathematics requires that things be continuously variable, so they can be differentiated and so on.

The idea there is that you can keep on dividing up space, and you can keep on dividing up time. So physicists understand that there is this contradiction at the deepest level of our most foundational explanations in physics. It's one of the reasons why there are these attempts to try and unify quantum theory and general relativity.

Because what is the fundamental nature of reality? Is it that things can be infinitely divisible? Or is it that we must stop somewhere or other? Because if it's infinitely divisible, then quantum theory might have to be subservient to general relativity. But we just don't know.

More Articles

View All
The Cult of Conformity in Silicon Valley
Who would want to be an early employee at imeem and Justin TV? Non-conformists, like, they would never be. You know a conformist would not be caught dead working at an early stage. This is Michael Seibel with Dalton Caldwell. Today, we’re talking about co…
Howard Marks: We're in an "Everything" Bubble
Today, we’re in an everything bubble. If he isn’t already, Howard Marks is an investor you should be listening to and learning from. He is the co-founder and co-chairman of Oaktree Capital Management, one of the most highly respected investment firms. In …
Meth in the City (Clip) | To Catch a Smuggler | National Geographic
If you take a quick look at this, so you don’t see anything. Okay. The only thing that might give it away is this part, what we glued it again, so that it’s an indication that somebody opened it up and glued it back again. Now, you can see here the vein,…
The future tense | The parts of speech | Grammar | Khan Academy
Hello, grammar pals, and welcome to the future full of jetpacks and spaceships and shiny jumpsuits. Uh, and also the word “will.” There’s a lot of “will” in the future. Uh, by which I mean that we use this word “will” to form the future tense in English.…
Target Practice for Turkeys | Live Free or Die
So I’m going to, I’m going to call out some of these turkeys to go on a date with me, and I’ve been working on my call really. Yeah, it goes like this: you sounded like a turkey. Spring and turkey hunting go hand in hand. At the mountains of North Carolin…
Tax multiplier, MPC, and MPS | AP Macroeconomics | Khan Academy
So in this video we’re going to revisit another super simple economy that only has a farmer and a builder on an island, and we’re going to review what we learned about the multiplier and the marginal propensity to consume. But we’re going to do it a littl…