yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Is the Universe Discrete or Continuous?


2m read
·Nov 3, 2024

You said that we went from atoms in the time of Democritus down to nuclei, and from there to protons and neutrons, and then to quarks. It's particles all the way down. To paraphrase Feynman, we can keep going forever, but it's not quite forever. Right at some point, you run into the Planck length. There's the Planck time, there's the Planck length, there's even the Planck mass, which is actually quite a large mass.

These things don't have any physical significance. It's not like the Planck time is the shortest possible time, and it's not like the Planck length is the shortest possible length. The reason for that is because these Planck things are part of quantum theory, but length is not described by quantum theory. It's described by the general theory of relativity, and in that theory, space is infinitely divisible.

There is no smallest possible length or time. This illuminates an ancient tension between the discrete and the continuous because quantum theory seems to suggest that things are discrete. For example, there's a smallest possible particle of gold—the gold atom. There's a smallest possible particle of electricity—the electron. There's a smallest possible particle of light—the photon.

In quantum theory, we have this idea of discreteness—that there is a smallest possible thing from which everything else is built. But in general relativity, the idea is the opposite. It says things can continuously vary, and if the mathematics requires that things be continuously variable, so they can be differentiated and so on.

The idea there is that you can keep on dividing up space, and you can keep on dividing up time. So physicists understand that there is this contradiction at the deepest level of our most foundational explanations in physics. It's one of the reasons why there are these attempts to try and unify quantum theory and general relativity.

Because what is the fundamental nature of reality? Is it that things can be infinitely divisible? Or is it that we must stop somewhere or other? Because if it's infinitely divisible, then quantum theory might have to be subservient to general relativity. But we just don't know.

More Articles

View All
15 Crucial Decisions Everyone Needs To Make
The Alex lady you all know and love is still around. We have a lot of work to be done, so we got a new team member. Me think of me as the Alex lady’s helper. Okay, back to the video: 15 crucial decisions everyone needs to make. Life is a roller coaster o…
HOW TO INVEST $100 PER WEEK ASAP
What’s up you guys? It’s Graham here. So in the last few months, this channel has grown more than I ever would have imagined. Because we have so many new people joining us, I think it’s really important that we get back to the basics and discuss some of t…
Dilations and shape properties
What we’re going to do in this video is think about how shapes’ properties might be preserved or not preserved from dilations. And so here we have this quadrilateral and we’re going to dilate it about point P here. I have this little dilation tool. So th…
Orthopedic Horseshoe | Diggers
So I’m going along on this nice even ground and I get a great hit. Now there’s something there—sounds pretty solid. So I drop down, dig a hole, roll the plug out and finally locate; oh, I got roundness! I just found something awesome. I just pulled up an …
The Pirate's Perspective | Lawless Oceans
Why did you want to go into piracy? But what made you want to conduct piracy locally? Is it a little way you or the other one for the oven can grow up? Yeah, I’m getting my devil on. Call myself the other one until the work was enough. The National Guard…
Verifying inverse functions from tables | Precalculus | Khan Academy
We’re told the following tables give all of the input-output pairs for the functions s and t. So we see this first table here, we have some x’s, and then they tell us what the corresponding s of x is. Then, in this table, we have some x’s, and they tell u…