yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Is the Universe Discrete or Continuous?


2m read
·Nov 3, 2024

You said that we went from atoms in the time of Democritus down to nuclei, and from there to protons and neutrons, and then to quarks. It's particles all the way down. To paraphrase Feynman, we can keep going forever, but it's not quite forever. Right at some point, you run into the Planck length. There's the Planck time, there's the Planck length, there's even the Planck mass, which is actually quite a large mass.

These things don't have any physical significance. It's not like the Planck time is the shortest possible time, and it's not like the Planck length is the shortest possible length. The reason for that is because these Planck things are part of quantum theory, but length is not described by quantum theory. It's described by the general theory of relativity, and in that theory, space is infinitely divisible.

There is no smallest possible length or time. This illuminates an ancient tension between the discrete and the continuous because quantum theory seems to suggest that things are discrete. For example, there's a smallest possible particle of gold—the gold atom. There's a smallest possible particle of electricity—the electron. There's a smallest possible particle of light—the photon.

In quantum theory, we have this idea of discreteness—that there is a smallest possible thing from which everything else is built. But in general relativity, the idea is the opposite. It says things can continuously vary, and if the mathematics requires that things be continuously variable, so they can be differentiated and so on.

The idea there is that you can keep on dividing up space, and you can keep on dividing up time. So physicists understand that there is this contradiction at the deepest level of our most foundational explanations in physics. It's one of the reasons why there are these attempts to try and unify quantum theory and general relativity.

Because what is the fundamental nature of reality? Is it that things can be infinitely divisible? Or is it that we must stop somewhere or other? Because if it's infinitely divisible, then quantum theory might have to be subservient to general relativity. But we just don't know.

More Articles

View All
Sigma Male Or Joker? (animated)
The Sigma male is the hierarchical chameleon that shape-shifts himself through life, and by his very nature, does not belong anywhere. Because the Sigma male rather sees human existence as a game, he sometimes chuckles a bit when he sees people taking lif…
The 5 Biggest Mistakes People Make In Their 20’s (And How To Avoid Them!)
What’s up you guys? It’s Graham here. Now, it sounds really weird to say, but I’m nearly finished up with my 20s. In two years, I’m gonna be 30 years old! That sounds really weird to say; that’s trippy. The same almost 30 sounds better than saying 28. Bu…
Touring Elon Musk’s $50,000 Tiny Home
So Elon Musk just purchased this foldable home for fifty thousand dollars that could be assembled in under an hour, and they’re taking over the world. I should have a Boxable! Yeah, you do! Some prototype Boxables that’s down in South Texas. It’s an out …
Best Film on Newton's Third Law. Ever.
There are a lot of misconceptions out there, and this is a video about one of the most common ones. So I went around asking people, “What makes the Moon go around the Earth?” and they told me, “The Earth puts a gravitational force on the moon.” But does …
Watch: An Incredible Viking Voyage—Made Entirely of Paper | National Geographic
I am old, but I remember long ago when we Norsemen ruled the sea. As our northern kingdom expanded, the secret of our success lay in how we built our fearsome longships. Imagine a young boy named Harold who yearns to see the world. His father is a shipbu…
'The Big Short' Explained (Movie Commentary w/ @HamishHodder and Jason Hughes)
All right everyone, hello hello! We should be live right now. Welcome everybody, welcome in! Should introduce who I’ve got alongside me tonight. Of course you guys know him, Hamish Hodder. How you doing, Hamish? Welcome in! I’m doing well, I’m very excit…