yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Is the Universe Discrete or Continuous?


2m read
·Nov 3, 2024

You said that we went from atoms in the time of Democritus down to nuclei, and from there to protons and neutrons, and then to quarks. It's particles all the way down. To paraphrase Feynman, we can keep going forever, but it's not quite forever. Right at some point, you run into the Planck length. There's the Planck time, there's the Planck length, there's even the Planck mass, which is actually quite a large mass.

These things don't have any physical significance. It's not like the Planck time is the shortest possible time, and it's not like the Planck length is the shortest possible length. The reason for that is because these Planck things are part of quantum theory, but length is not described by quantum theory. It's described by the general theory of relativity, and in that theory, space is infinitely divisible.

There is no smallest possible length or time. This illuminates an ancient tension between the discrete and the continuous because quantum theory seems to suggest that things are discrete. For example, there's a smallest possible particle of gold—the gold atom. There's a smallest possible particle of electricity—the electron. There's a smallest possible particle of light—the photon.

In quantum theory, we have this idea of discreteness—that there is a smallest possible thing from which everything else is built. But in general relativity, the idea is the opposite. It says things can continuously vary, and if the mathematics requires that things be continuously variable, so they can be differentiated and so on.

The idea there is that you can keep on dividing up space, and you can keep on dividing up time. So physicists understand that there is this contradiction at the deepest level of our most foundational explanations in physics. It's one of the reasons why there are these attempts to try and unify quantum theory and general relativity.

Because what is the fundamental nature of reality? Is it that things can be infinitely divisible? Or is it that we must stop somewhere or other? Because if it's infinitely divisible, then quantum theory might have to be subservient to general relativity. But we just don't know.

More Articles

View All
Bringing Life-Changing Treatments to the Blind in India | National Geographic
The world is invisible to the blind people, but at the same time, the blind people withdraw themselves from the surrounding, and they make them invisible. Unless the people who are cited actively try to find them out, they will remain in the dark. [Music…
Q&A with Experts About the Upcoming Total Solar Eclipse | National Geographic
Good evening, y’all. I’m Dr. Jada Eisler, a National Geographic Explorer and an observational astrophysicist. We’re here in Terrebonne, Oregon. Over my shoulder is Monkeyface, where earlier today climbers were getting high so they could see the views of t…
Steve Varsano meets some fans!
Willing to work for free, everybody. Same thing. I need somebody who really knows airplanes. Telling you, it takes a long time. But I’ll tell you what you should go do: you try to find an aircraft charter broker. They will teach you about the business, an…
Convergence on macro scale | GDP: Measuring national income | Macroeconomics | Khan Academy
We’ve talked about things that might drive inequality, things that Thomas Piketty refers to as forces of divergence. But now, let’s think about, or at least some of what he cites as forces of convergence. So, forces of convergence are things that might ma…
Warren Buffett Shares His 2,600 Year Old Investment Advice
First investment primer that I know of, and it was pretty good advice, was delivered in about 600 BC by Aesop. And Aesop, you’ll remember, said a bird in the hand is worth two in the bush. Incidentally, Aesop did not know it was 600 BC; he was smart, but …
Approximating multi digit division
What we want to do in this video is get some practice estimating multi-digit division problems. So here we’re asked to estimate 794 divided by 18. Now, if you wanted to get the exact answer, you’d probably have to do—in fact, you would have to do—some lon…