yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy


2m read
·Nov 10, 2024

Let's say that we have a line. I'm drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will eventually be a transversal between the two parallel lines. So let me draw that.

So I'm just drawing a line that goes through my point and intersects my original line, doing that. So it's going to look like that, and then I'm really just going to use the idea of corresponding angle congruence for parallel lines. So what I can do is now take my compass and think about this angle right over here.

So I'll draw it like that and say, all right, if I have, if I draw an arc of the same radius over here, can I reconstruct that angle? And so where should the point be on this left end? Well, to do that, I can just measure the distance between these two points using my compass.

So I'm adjusting it a little bit to get the point, the distance between those two points, and then I can use that up over here to figure out—and got a little bit shaky—I could figure out that point right over there. And just like that, I now have two corresponding angles defined by transversal and parallel lines.

So what I could do is take my straight edge and make it go through those points that I just created. So let's see, make sure I'm going through them, and it would look like that. And I have just constructed two parallel lines.

And once again, how do I know that this line is parallel to this line? Because we have a transversal that intersects both of them, and these two angles, which are corresponding angles, are congruent. So these two lines must be parallel.

More Articles

View All
Using matrices to manipulate data: Pet store | Matrices | Precalculus | Khan Academy
We’re told a certain pet store chain has three types of dog food, and each comes in bags of two different sizes. Matrix A represents the store’s inventory at location A, where rows are food types and columns are bag sizes. So, see, it’s store A that’s wha…
The Stanford Prison Experiment: Unlocking The Truth | Official Trailer | National Geographic
I’ve only been in jail once: the Stanford prison experiment. In the summer of 1971, Dr. Zimbardo took a bunch of college kids, randomly assigned them to be prisoners and guards, and locked them in the basement. The only thing we told the guards was, “Do w…
Electron configurations with the periodic table | Chemistry | Khan Academy
Let’s explore electronic configurations. It’s basically arranging electrons of different elements in various shells and subshells. Let me quickly show you some examples. Yes, this will look overwhelming, but for now, focus on these numbers: 1, 2, 3, 4, 5,…
Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy
Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes. Let’s see what’s going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the l…
Energy Conservation| Energy Resources and Consumption| AP Environmental Science| Khan Academy
In this video, we’re going to talk about energy conservation, or trying to save or lower the amount of energy that we use. Now, a lot of y’all might already have a sense that that is a good thing, while others of you might say, “Hey, why can’t I just use …
Why You Will Marry the Wrong Person
I’ve been asked to talk to you today about an essay that I wrote, uh, for the New York Times, um, last year, which went under a rather dramatic, uh, heading. Uh, it was called “Why You Will Marry the Wrong Person.” And perhaps we can just begin, um, we’re…