yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy


2m read
·Nov 10, 2024

Let's say that we have a line. I'm drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will eventually be a transversal between the two parallel lines. So let me draw that.

So I'm just drawing a line that goes through my point and intersects my original line, doing that. So it's going to look like that, and then I'm really just going to use the idea of corresponding angle congruence for parallel lines. So what I can do is now take my compass and think about this angle right over here.

So I'll draw it like that and say, all right, if I have, if I draw an arc of the same radius over here, can I reconstruct that angle? And so where should the point be on this left end? Well, to do that, I can just measure the distance between these two points using my compass.

So I'm adjusting it a little bit to get the point, the distance between those two points, and then I can use that up over here to figure out—and got a little bit shaky—I could figure out that point right over there. And just like that, I now have two corresponding angles defined by transversal and parallel lines.

So what I could do is take my straight edge and make it go through those points that I just created. So let's see, make sure I'm going through them, and it would look like that. And I have just constructed two parallel lines.

And once again, how do I know that this line is parallel to this line? Because we have a transversal that intersects both of them, and these two angles, which are corresponding angles, are congruent. So these two lines must be parallel.

More Articles

View All
Introduction to irregular verbs | The parts of speech | Grammar | Khan Academy
Hello, Garans. Today I want to start talking about irregular verbs. That is to say, verbs that are a little weird. You know, we have this idea of a regular verb that we can conjugate in all tenses, and it’s just going to behave in a way that we expect. L…
Wires, cables, and WiFi | Internet 101 | Computer Science | Khan Academy
My name is Tess Winlock. I’m a software engineer at Google. Here’s a question: how does a picture, text message, or email get sent from one device to another? It isn’t magic; it’s the internet, a tangible physical system that was made to move information.…
Partial sums: term value from partial sum | Series | AP Calculus BC | Khan Academy
We’re told that the nth partial sum of the series from N equals one to infinity of a sub n is given by, and so the sum of the first n terms is N squared plus 1 over n plus 1. They want us to figure out what is the actual seventh term. And like always, pau…
We Shouldn't Celebrate This
What toys did you play with as a kid? For many who watch this channel, I’m sure the answer could be action figures, maybe a superhero you loved from that cartoon you watched as kids. We don’t think much about the media we consume and the toys we play with…
General Stanley McChrystal on leadership & navigating complex challenges | Homeroom with Sal
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream. This is a thing we started, well, it seems like a long time ago now, but it was several weeks ago when the school closures happened. Just a way to continue to support…
The Problem With Startup "Experts"
There’s a lot of advice giving things that are attached to a large tech company or like a European conglomerate, and they’re like, “This is our Innovation lab and we are going to work with startups. Yes, and like we’ll be your first customer, we’ll be you…