yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy


2m read
·Nov 10, 2024

Let's say that we have a line. I'm drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will eventually be a transversal between the two parallel lines. So let me draw that.

So I'm just drawing a line that goes through my point and intersects my original line, doing that. So it's going to look like that, and then I'm really just going to use the idea of corresponding angle congruence for parallel lines. So what I can do is now take my compass and think about this angle right over here.

So I'll draw it like that and say, all right, if I have, if I draw an arc of the same radius over here, can I reconstruct that angle? And so where should the point be on this left end? Well, to do that, I can just measure the distance between these two points using my compass.

So I'm adjusting it a little bit to get the point, the distance between those two points, and then I can use that up over here to figure out—and got a little bit shaky—I could figure out that point right over there. And just like that, I now have two corresponding angles defined by transversal and parallel lines.

So what I could do is take my straight edge and make it go through those points that I just created. So let's see, make sure I'm going through them, and it would look like that. And I have just constructed two parallel lines.

And once again, how do I know that this line is parallel to this line? Because we have a transversal that intersects both of them, and these two angles, which are corresponding angles, are congruent. So these two lines must be parallel.

More Articles

View All
Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy
[Instructor] So we have two vectors here, vector A and vector B. And what we’re gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And …
How to NOT be LAZY anymore - The LAZINESS CURE
[Music] Let me ask you something. Do you come home from work just to sit on the couch and watch TV, or browse dank memes on your iPad? Maybe a friend will text you wanting to go out later, and you respond pretty exhausted, “Just gonna take it easy tonigh…
Lytic and lysogenic cycles | Viruses | High school biology | Khan Academy
What we’re going to do in this video is talk about two of the ways that a virus can leverage a cell to replicate the virus’s DNA. So the first is the lytic cycle, and this is what people often associate viruses doing. Let’s imagine a cell. It’s going to …
The Rise of Pong | Generation X
On loop, bloop-bloop! It was the coolest thing you’ve ever seen in your life, dude. It’s a square ball that’s moving at like the slowest pace ever. It’s like so beautiful to watch. Pong, it’s like this form of meditation. Pong was the first successfully …
Iceland Is Growing New Forests for the First Time in 1,000 Years | Short Film Showcase
What I love about working in forestry is the chance, every once in a while, to get out of the office and walk in the woods. To see the forest growing, to see that we’re actually doing some good, is a very rewarding thing—a very satisfying. But Iceland is…
Sam Altman's Method for Clear Thinking
Speaker: No, I’m a huge notetaker. Oh, tell me about that—there’s all these like fancy notebooks in the world, yeah, you don’t want those, um, you definitely want a spiral notebook because one thing that’s important is you can rip Pages out frequently, an…