yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy


2m read
·Nov 10, 2024

Let's say that we have a line. I'm drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will eventually be a transversal between the two parallel lines. So let me draw that.

So I'm just drawing a line that goes through my point and intersects my original line, doing that. So it's going to look like that, and then I'm really just going to use the idea of corresponding angle congruence for parallel lines. So what I can do is now take my compass and think about this angle right over here.

So I'll draw it like that and say, all right, if I have, if I draw an arc of the same radius over here, can I reconstruct that angle? And so where should the point be on this left end? Well, to do that, I can just measure the distance between these two points using my compass.

So I'm adjusting it a little bit to get the point, the distance between those two points, and then I can use that up over here to figure out—and got a little bit shaky—I could figure out that point right over there. And just like that, I now have two corresponding angles defined by transversal and parallel lines.

So what I could do is take my straight edge and make it go through those points that I just created. So let's see, make sure I'm going through them, and it would look like that. And I have just constructed two parallel lines.

And once again, how do I know that this line is parallel to this line? Because we have a transversal that intersects both of them, and these two angles, which are corresponding angles, are congruent. So these two lines must be parallel.

More Articles

View All
Buddha - Avoid Fools, Make Wise Friends
In /The Dhammapada/, Buddha says, “If, as you travel, you meet none better than yourself, or equal, you should steadfastly travel alone. There’s no companionship with fools.” So, Buddha’s saying that the fool doesn’t make a good friend, and if you don’t h…
Federalist No. 10 (part 1) | US government and civics | Khan Academy
In other videos, we have talked about how ratification of the U.S. Constitution to replace the Articles of Confederation was not a slam dunk. After the Constitution was drafted during the Constitutional Convention in mid-1787, you actually have a signific…
The Golden Ratio: Nature's Favorite Number
Humanity has always been in search of patterns. They make us feel comfortable. They give us meaning. Whether they be in the deepest, most conceptually difficult topics like string theory and quantum mechanics, or even in simple things like the behaviour o…
I am making Axe Ghost
Hey, my name’s Thomas. This is unusual content for this channel. I realize I’ve been working on this video game called Ax Ghost. Just recently, I’ve published a demo of it on Steam, and I’m just going to play it here—play the current build—and let you see…
The Machinery Of Freedom: Illustrated summary
In the nineteenth century, the political philosophy that supported small government and free markets was called liberalism. Unfortunately, between then and now, the enemies of liberalism succeeded in stealing its name. Which is why people with similar vie…
#shorts Type-B Dial
So this is a brand known as Loo. There are type A style dials and there are type B style dials. Type B is going to have a different orientation of the hours and minutes. So the hours in this case are on the inside; the minutes are on the outside. That wa…