yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Kirchhoff's voltage law | Circuit analysis | Electrical engineering | Khan Academy


4m read
·Nov 11, 2024

Now we're ready to start hooking up our components into circuits, and one of the two things that are going to be very useful to us are Kof's laws. In this video, we're going to talk about Kof's voltage law.

If we look at this circuit here, this is a voltage source. Let's just say this is 10 volts, and we'll put a resistor connected to it. Let's say the resistor is 200 ohms, just for something to talk about. One of the things I can do here is I can label this with voltages on the different nodes. Here's one node down here; I'm going to arbitrarily call this zero volts.

Then, if I go through this voltage source, this node up here is going to be at 10 volts. So here's a little bit of jargon we call this voltage here: the voltage goes up as we go through the voltage source, and that's called a voltage rise. Over on this side, if we were standing at this point in the circuit right here and we went from this node down to this node like that, the voltage would go from 10 volts down to zero volts in this circuit, and that's called a voltage drop.

That's just a little bit of slang or jargon that we use to talk about changes in voltage. Now, I can make an observation about this. If I look at this voltage rise here, it's 10 volts, and if I look at that voltage drop, the drop is 10 volts. I can say the drop is 10 volts or I could say the rise on this side is minus 1 volt. A rise of minus 1; these two expressions mean exactly the same thing. It meant that the voltage went from 10 volts to zero volts, sort of going through this 200 Ohm resistor.

So I write a little expression for this, which is: V rise minus V drop equals zero. I went up 10 volts, back down 10 volts; I end up back at zero volts, and that's this right here. This is a form of Kirc hoff's voltage law. It says the voltage rises minus the voltage drops is equal to zero.

So if we just plug our actual numbers in here, what we just get is 10 minus 10 equals 0. I'm going to draw this circuit again. Let's draw another version of this circuit, and this time we'll have two resistors instead of one. We'll make it, uh, whoops, we'll make it two 100-ohm resistors, and let's go through and label these. This is again 10 volts, so this node is at Z volts.

This node is at 10 volts. What's this node? This node here is, these are equal resistors, so this is going to be at five volts. That's this node voltage here with respect to here, so that is five volts. This is 5 volts, and this is 10 volts. So let's just do our visit again. Let's start here and count the rises and drops.

Okay, we go up 10 volts, then we have a voltage drop of five, and we have another voltage drop of five, and then we get back to zero. We can write the sum of the rises and the falls just like we did before. We can say 10 volts minus 5 minus 5 equals 0.

All right, so I can generalize this. We can say this in general; we can do the summation—that's the summation symbol—of the V rise minus the sum of the V fall equals zero. This is a form of Kirc hoff's voltage law. The sum of the voltage rises minus the sum of the voltage falls is always equal to zero.

There's a more compact way to write this that I like better, and that is we start at this corner. We start at any corner of the circuit. Let's say we start here; we're going to go up 10 volts, down 5 volts, and down 5 volts. So what we're adding is the voltage rises. We're adding all the voltage rises: rise + 10, that's a rise of minus 5 and a rise of minus 5.

So I can write this with just one summation symbol: the voltages around the loop, where I takes us all the way around the loop, equals zero. So this means I start any place on the circuit, go around in some direction—this way or this way—up, down, down, and I end up back at the same voltage I started at.

So let's put a box around that too. This is KVL, Kirc hoff's voltage law. Now, I started over here in this corner, but I could start anywhere. If I started at the top and went around clockwise, if I started here, say I would go minus 5, minus 5, plus 10, and I'd get the same answer. I'd still get back to zero.

If I start here and I go around the other way, the same thing happens: plus 5 rise, plus 5 rise, and this is a 10 volt drop. So it works whichever way you go around the loop, and it works for whatever node you start at. That's the essence of Kirc hoff's voltage law.

We're going to pair this with the current law, Kirc hoff's current law, and with those two, that's our tools for doing circuit analysis.

More Articles

View All
Jacksonian Democracy part 4
So we’ve been talking about Jacksonian Democracy, and when we last left off, Andrew Jackson had defeated John Quincy Adams in the election of 1828, largely by claiming that Quincy Adams had won the previous election through a corrupt bargain. So Jackson …
C Lesson 1 (part 1)
Hey guys, this Mac isn’t alone, and today, as I promised before, I’m going to be making my first of many programming lessons. So first of all, sorry if it sounds like I have a cold because I actually do this time. But anyway, I must proceed. So the progr…
How to have the best summer of your life
We all want to have a good time this summer. I personally look forward to the summertime every single year because I live in British Columbia and 90% of the year is overcast, rainy, gloomy, cloudy. It’s not a fun time. When the weather starts to get good,…
Is Google Glass the End of Privacy? | Big Think
I think Google Glass could be an incredible technology. One of my grad students is working at the lab on a simultaneous subtitled translation application for movies. So you could go into a movie and be a Spanish-speaking person, and you could go into an …
What Is Intelligence? Where Does it Begin?
Humans are proud of a lot of things, from particle accelerators to poetry to Pokemon. All of them made possible because of something humans value extremely highly: Intelligence. We think of intelligence as a trait like height or strength, but when we try …
How To Get Rich According To Gary Vaynerchuk
There are a million ways to make a million dollars, and in this video, we’re looking at one of them. Garyvee is described by many as a marketing wizard, and soon enough you’ll understand why. After taking over his family’s business and rebranding it into …