yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Kirchhoff's voltage law | Circuit analysis | Electrical engineering | Khan Academy


4m read
·Nov 11, 2024

Now we're ready to start hooking up our components into circuits, and one of the two things that are going to be very useful to us are Kof's laws. In this video, we're going to talk about Kof's voltage law.

If we look at this circuit here, this is a voltage source. Let's just say this is 10 volts, and we'll put a resistor connected to it. Let's say the resistor is 200 ohms, just for something to talk about. One of the things I can do here is I can label this with voltages on the different nodes. Here's one node down here; I'm going to arbitrarily call this zero volts.

Then, if I go through this voltage source, this node up here is going to be at 10 volts. So here's a little bit of jargon we call this voltage here: the voltage goes up as we go through the voltage source, and that's called a voltage rise. Over on this side, if we were standing at this point in the circuit right here and we went from this node down to this node like that, the voltage would go from 10 volts down to zero volts in this circuit, and that's called a voltage drop.

That's just a little bit of slang or jargon that we use to talk about changes in voltage. Now, I can make an observation about this. If I look at this voltage rise here, it's 10 volts, and if I look at that voltage drop, the drop is 10 volts. I can say the drop is 10 volts or I could say the rise on this side is minus 1 volt. A rise of minus 1; these two expressions mean exactly the same thing. It meant that the voltage went from 10 volts to zero volts, sort of going through this 200 Ohm resistor.

So I write a little expression for this, which is: V rise minus V drop equals zero. I went up 10 volts, back down 10 volts; I end up back at zero volts, and that's this right here. This is a form of Kirc hoff's voltage law. It says the voltage rises minus the voltage drops is equal to zero.

So if we just plug our actual numbers in here, what we just get is 10 minus 10 equals 0. I'm going to draw this circuit again. Let's draw another version of this circuit, and this time we'll have two resistors instead of one. We'll make it, uh, whoops, we'll make it two 100-ohm resistors, and let's go through and label these. This is again 10 volts, so this node is at Z volts.

This node is at 10 volts. What's this node? This node here is, these are equal resistors, so this is going to be at five volts. That's this node voltage here with respect to here, so that is five volts. This is 5 volts, and this is 10 volts. So let's just do our visit again. Let's start here and count the rises and drops.

Okay, we go up 10 volts, then we have a voltage drop of five, and we have another voltage drop of five, and then we get back to zero. We can write the sum of the rises and the falls just like we did before. We can say 10 volts minus 5 minus 5 equals 0.

All right, so I can generalize this. We can say this in general; we can do the summation—that's the summation symbol—of the V rise minus the sum of the V fall equals zero. This is a form of Kirc hoff's voltage law. The sum of the voltage rises minus the sum of the voltage falls is always equal to zero.

There's a more compact way to write this that I like better, and that is we start at this corner. We start at any corner of the circuit. Let's say we start here; we're going to go up 10 volts, down 5 volts, and down 5 volts. So what we're adding is the voltage rises. We're adding all the voltage rises: rise + 10, that's a rise of minus 5 and a rise of minus 5.

So I can write this with just one summation symbol: the voltages around the loop, where I takes us all the way around the loop, equals zero. So this means I start any place on the circuit, go around in some direction—this way or this way—up, down, down, and I end up back at the same voltage I started at.

So let's put a box around that too. This is KVL, Kirc hoff's voltage law. Now, I started over here in this corner, but I could start anywhere. If I started at the top and went around clockwise, if I started here, say I would go minus 5, minus 5, plus 10, and I'd get the same answer. I'd still get back to zero.

If I start here and I go around the other way, the same thing happens: plus 5 rise, plus 5 rise, and this is a 10 volt drop. So it works whichever way you go around the loop, and it works for whatever node you start at. That's the essence of Kirc hoff's voltage law.

We're going to pair this with the current law, Kirc hoff's current law, and with those two, that's our tools for doing circuit analysis.

More Articles

View All
How Big Can a Person Get?
Hey, Vsauce. Michael here. Ten centimeters - about four inches. This is how much taller on average people are today than they were 150 years ago. Better nutrition and medical care early in life has allowed us to better take advantage of the blueprints wi…
Why your life is so boring
When we think about our life, we usually think about it in the form of a story. You know, first we were born, and then we did some things and made some memories, and now we’re here and we work in our job or whatever. But in the future, we plan on doing mo…
Interpreting direction of motion from position-time graph | AP Calculus AB | Khan Academy
An object is moving along a line. The following graph gives the object’s position relative to its starting point over time. For each point on the graph, is the object moving forward, backward, or neither? So pause this video and try to figure that out. A…
Le Chatelier's principle: Worked example | Chemical equilibrium | Chemistry | Khan Academy
In this video, we’re going to go through an example reaction that uses Le Chatelier’s principle. So, what we’re going to do is we’re going to apply Le Chatelier’s principle to look at various changes to this reaction when we perturb our reaction from equi…
12 STOIC PRINCIPLES FOR IMMEDIATE LIFE TRANSFORMATION | STOICISM INSIGHTS
Welcome back to Stoicism Insights, your go-to destination for timeless wisdom and practical life lessons inspired by the ancient philosophy of Stoicism. Today, we have something special in store for you. Prepare to embark on a journey of self-discovery, r…
Abiotic factors and an organism's range | High school biology | Khan Academy
So, let’s talk a little bit about abiotic factors for an organism’s range. Before we even get into it, let’s just think about what these words mean. In other videos, we’ve talked about how abiotic means non-living, while biotic would refer to living. So, …